* init tgi request * update openai api * update for pp * update and add readme * add to docker * add start bash * update * update * update
196 lines
No EOL
5.5 KiB
Markdown
196 lines
No EOL
5.5 KiB
Markdown
# Running Lightweight Serving using IPEX-LLM on one Intel GPU
|
|
|
|
## Requirements
|
|
|
|
To run this example with IPEX-LLM on one Intel GPU, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
|
|
|
## Example
|
|
|
|
### 1. Install
|
|
|
|
#### 1.1 Installation on Linux
|
|
We suggest using conda to manage environment:
|
|
```bash
|
|
conda create -n llm python=3.11
|
|
conda activate llm
|
|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
|
pip install fastapi uvicorn openai
|
|
pip install gradio # for gradio web UI
|
|
conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc
|
|
```
|
|
|
|
#### 1.2 Installation on Windows
|
|
We suggest using conda to manage environment:
|
|
```bash
|
|
conda create -n llm python=3.11 libuv
|
|
conda activate llm
|
|
|
|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
|
pip install fastapi uvicorn openai
|
|
pip install gradio # for gradio web UI
|
|
conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc
|
|
```
|
|
|
|
### 2. Configures OneAPI environment variables for Linux
|
|
|
|
> [!NOTE]
|
|
> Skip this step if you are running on Windows.
|
|
|
|
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
|
|
|
|
```bash
|
|
source /opt/intel/oneapi/setvars.sh
|
|
```
|
|
|
|
### 3. Runtime Configurations
|
|
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
|
|
#### 3.1 Configurations for Linux
|
|
<details>
|
|
|
|
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
|
|
|
|
```bash
|
|
export USE_XETLA=OFF
|
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
|
export SYCL_CACHE_PERSISTENT=1
|
|
```
|
|
|
|
</details>
|
|
|
|
<details>
|
|
|
|
<summary>For Intel Data Center GPU Max Series</summary>
|
|
|
|
```bash
|
|
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
|
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
|
export SYCL_CACHE_PERSISTENT=1
|
|
export ENABLE_SDP_FUSION=1
|
|
```
|
|
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
|
|
</details>
|
|
|
|
<details>
|
|
|
|
<summary>For Intel iGPU</summary>
|
|
|
|
```bash
|
|
export SYCL_CACHE_PERSISTENT=1
|
|
export BIGDL_LLM_XMX_DISABLED=1
|
|
```
|
|
|
|
</details>
|
|
|
|
#### 3.2 Configurations for Windows
|
|
<details>
|
|
|
|
<summary>For Intel iGPU</summary>
|
|
|
|
```cmd
|
|
set SYCL_CACHE_PERSISTENT=1
|
|
set BIGDL_LLM_XMX_DISABLED=1
|
|
```
|
|
|
|
</details>
|
|
|
|
<details>
|
|
|
|
<summary>For Intel Arc™ A-Series Graphics</summary>
|
|
|
|
```cmd
|
|
set SYCL_CACHE_PERSISTENT=1
|
|
```
|
|
|
|
</details>
|
|
|
|
> [!NOTE]
|
|
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
|
|
|
|
### 4. Running example
|
|
|
|
```
|
|
python ./lightweight_serving.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --low-bit LOW_BIT --port PORT
|
|
```
|
|
|
|
Arguments info:
|
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the model (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
|
|
- `--low-bit LOW_BIT`: Sets the low bit optimizations (such as 'sym_int4', 'fp16', 'fp8' and 'fp6') for the model. It is default to be `sym_int4`.
|
|
- `--port PORT`: The serving access port. It is default to be `8000`.
|
|
|
|
|
|
### 5. Sample Input and Output
|
|
|
|
We can use `curl` to test serving api. And need to set no_proxy to ensure that requests are not forwarded by a proxy. `export no_proxy=localhost,127.0.0.1`
|
|
|
|
#### /generate
|
|
|
|
```bash
|
|
curl -X POST -H "Content-Type: application/json" -d '{
|
|
"inputs": "What is AI?",
|
|
"parameters": {
|
|
"max_new_tokens": 32,
|
|
"min_new_tokens": 32,
|
|
"repetition_penalty": 1.0,
|
|
"temperature": 1.0,
|
|
"do_sample": false,
|
|
"top_k": 5,
|
|
"tok_p": 1.0
|
|
},
|
|
"stream": false
|
|
}' http://localhost:8000/generate
|
|
```
|
|
|
|
#### /generate_stream
|
|
|
|
```bash
|
|
curl -X POST -H "Content-Type: application/json" -d '{
|
|
"inputs": "What is AI?",
|
|
"parameters": {
|
|
"max_new_tokens": 32,
|
|
"min_new_tokens": 32,
|
|
"repetition_penalty": 1.0,
|
|
"temperature": 1.0,
|
|
"do_sample": false,
|
|
"top_k": 5,
|
|
"tok_p": 1.0
|
|
},
|
|
"stream": false
|
|
}' http://localhost:8000/generate_stream
|
|
```
|
|
|
|
#### /v1/chat/completions
|
|
|
|
```bash
|
|
curl http://localhost:8000/v1/chat/completions \
|
|
-H "Content-Type: application/json" \
|
|
-d '{
|
|
"model": "Llama-2-7b-chat-hf",
|
|
"messages": [{"role": "user", "content": "Hello! What is your name?"}]
|
|
}'
|
|
```
|
|
|
|
#### /v1/completions
|
|
|
|
```bash
|
|
curl http://localhost:8000/v1/completions \
|
|
-H "Content-Type: application/json" \
|
|
-d '{
|
|
"model": "Llama-2-7b-chat-hf",
|
|
"prompt": "Once upon a time",
|
|
"max_tokens": 32
|
|
}'
|
|
```
|
|
|
|
### 6. Benchmark with wrk
|
|
|
|
Please refer to [here](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Pipeline-Parallel-Serving#4-benchmark-with-wrk) for more details
|
|
|
|
## 7. Using the `benchmark.py` Script
|
|
|
|
Please refer to [here](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Pipeline-Parallel-Serving#5-using-the-benchmarkpy-script) for more details
|
|
|
|
## 8. Gradio Web UI
|
|
|
|
Please refer to [here](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Pipeline-Parallel-Serving#6-gradio-web-ui) for more details |