* migrate to ipexlm * fix workflow * fix run_multi * fix precision map * rename ipexlm to ipexllm * rename bigdl to ipex in comments
		
			
				
	
	
		
			165 lines
		
	
	
	
		
			6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			165 lines
		
	
	
	
		
			6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
import argparse
 | 
						|
import json
 | 
						|
import logging
 | 
						|
import os
 | 
						|
from harness_to_leaderboard import *
 | 
						|
from lm_eval import tasks, evaluator, utils, models
 | 
						|
from multiprocessing import Queue, Process
 | 
						|
import multiprocessing as mp
 | 
						|
from contextlib import redirect_stdout, redirect_stderr
 | 
						|
 | 
						|
from ipexllm import IPEXLLM
 | 
						|
models.MODEL_REGISTRY['ipex-llm'] = IPEXLLM    # patch ipex-llm to harness
 | 
						|
 | 
						|
logging.getLogger("openai").setLevel(logging.WARNING)
 | 
						|
 | 
						|
 | 
						|
def parse_device(device):
 | 
						|
    device = device.split(':')
 | 
						|
    if len(device) == 0:
 | 
						|
        return device
 | 
						|
    device_indices = device[1].split(',')
 | 
						|
    return list(map(lambda i: f"{device[0]}:{i}", device_indices))
 | 
						|
 | 
						|
def run_job(device, prec, task, args, device_pool, result_pool):
 | 
						|
    print(f"Current Job: device={device}, precision={prec}, task={task}")
 | 
						|
    device_type = device.split(':')[0]
 | 
						|
    description_dict = {}
 | 
						|
    if args.description_dict_path:
 | 
						|
        with open(args.description_dict_path, "r") as f:
 | 
						|
            description_dict = json.load(f)
 | 
						|
 | 
						|
    model_name = os.path.basename(os.path.realpath(args.pretrained))
 | 
						|
    output_path = args.output_path if args.output_path else "results"
 | 
						|
    
 | 
						|
    prec_arg = parse_precision(prec, args.model)
 | 
						|
    model_args = f"pretrained={args.pretrained},{prec_arg}"
 | 
						|
    if len(args.model_args) > 0:
 | 
						|
        model_args = f"{model_args},{args.model_args}"
 | 
						|
    task_names=task_map.get(task, task).split(',')
 | 
						|
    num_fewshot = task_to_n_few_shots.get(task, args.num_fewshot)
 | 
						|
    log_dir = f"{output_path}/{model_name}/{device_type}/{prec}/{task}"
 | 
						|
    os.makedirs(log_dir, exist_ok=True)
 | 
						|
 | 
						|
    with open(f"{log_dir}/log.txt", 'w') as f, redirect_stderr(f), redirect_stdout(f):
 | 
						|
        results = evaluator.simple_evaluate(
 | 
						|
            model=args.model,
 | 
						|
            model_args=model_args,
 | 
						|
            tasks=task_names,
 | 
						|
            num_fewshot=num_fewshot,
 | 
						|
            batch_size=args.batch_size,
 | 
						|
            max_batch_size=args.max_batch_size,
 | 
						|
            device=device,
 | 
						|
            no_cache=args.no_cache,
 | 
						|
            limit=args.limit,
 | 
						|
            description_dict=description_dict,
 | 
						|
            decontamination_ngrams_path=args.decontamination_ngrams_path,
 | 
						|
            check_integrity=args.check_integrity,
 | 
						|
            write_out=args.write_out,
 | 
						|
            output_base_path=log_dir
 | 
						|
        )
 | 
						|
        if len(results['results']) > 1:
 | 
						|
            average = {}
 | 
						|
            for _, subtask in results['results'].items():
 | 
						|
                for metric, value in subtask.items():
 | 
						|
                    average[metric] = average.get(metric, []) + [value]
 | 
						|
            for k, v in average.items():
 | 
						|
                average[k] = sum(v) / len(v) if not k.endswith("_stderr") else 0
 | 
						|
            results['results'][task] = average
 | 
						|
            results['versions'][task] = 1
 | 
						|
 | 
						|
        dumped = json.dumps(results, indent=2)
 | 
						|
        print(dumped)
 | 
						|
 | 
						|
        if args.output_path:
 | 
						|
            with open(f"{log_dir}/result.json", "w") as f:
 | 
						|
                f.write(dumped)
 | 
						|
        result_pool.put(results)
 | 
						|
        device_pool.put(device)
 | 
						|
    
 | 
						|
 | 
						|
def parse_args():
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument("--model", required=True)
 | 
						|
    parser.add_argument("--model_args", default="")
 | 
						|
    parser.add_argument("--pretrained", required=True, type=str)
 | 
						|
    parser.add_argument("--tasks", required=True, nargs='+', type=str)
 | 
						|
    parser.add_argument("--precision", required=True, nargs='+', type=str)
 | 
						|
    parser.add_argument("--provide_description", action="store_true")
 | 
						|
    parser.add_argument("--num_fewshot", type=int, default=0)
 | 
						|
    parser.add_argument("--batch_size", type=str, default=None)
 | 
						|
    parser.add_argument(
 | 
						|
        "--max_batch_size",
 | 
						|
        type=int,
 | 
						|
        default=None,
 | 
						|
        help="Maximal batch size to try with --batch_size auto",
 | 
						|
    )
 | 
						|
    parser.add_argument("--device", type=str, default=None)
 | 
						|
    parser.add_argument("--output_path", default=None)
 | 
						|
    parser.add_argument(
 | 
						|
        "--limit",
 | 
						|
        type=float,
 | 
						|
        default=None,
 | 
						|
        help="Limit the number of examples per task. "
 | 
						|
        "If <1, limit is a percentage of the total number of examples.",
 | 
						|
    )
 | 
						|
    parser.add_argument("--data_sampling", type=float, default=None)
 | 
						|
    parser.add_argument("--no_cache", action="store_true")
 | 
						|
    parser.add_argument("--decontamination_ngrams_path", default=None)
 | 
						|
    parser.add_argument("--description_dict_path", default=None)
 | 
						|
    parser.add_argument("--check_integrity", action="store_true")
 | 
						|
    parser.add_argument("--write_out", action="store_true", default=False)
 | 
						|
    parser.add_argument("--output_base_path", type=str, default=None)
 | 
						|
 | 
						|
    return parser.parse_args()
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
    mp.set_start_method('spawn')
 | 
						|
    args = parse_args()
 | 
						|
    
 | 
						|
    assert not args.provide_description  # not implemented
 | 
						|
 | 
						|
    if args.limit:
 | 
						|
        print(
 | 
						|
            "WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
 | 
						|
        )
 | 
						|
    print(f"Selected Tasks: {args.tasks}")
 | 
						|
 | 
						|
    device_pool = Queue()
 | 
						|
    result_pool = Queue()
 | 
						|
    for device in parse_device(args.device):
 | 
						|
        device_pool.put(device)
 | 
						|
 | 
						|
    jobs = []
 | 
						|
    for prec in args.precision:
 | 
						|
        for task in args.tasks:
 | 
						|
            device = device_pool.get()
 | 
						|
            p = Process(target=run_job, args=(device, prec, task, args, device_pool, result_pool))
 | 
						|
            p.start()
 | 
						|
            jobs.append(p)
 | 
						|
 | 
						|
    for j in jobs:
 | 
						|
        j.join()
 | 
						|
    
 | 
						|
    while not result_pool.empty():
 | 
						|
        result = result_pool.get()
 | 
						|
        print(result if isinstance(result, str) else evaluator.make_table(result))
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    main()
 |