* Change to 'pip install .. --extra-index-url' for readthedocs * Change to 'pip install .. --extra-index-url' for examples * Change to 'pip install .. --extra-index-url' for remaining files * Fix URL for ipex * Add links for ipex US and CN servers * Update ipex cpu url * remove readme * Update for github actions * Update for dockerfiles |
||
|---|---|---|
| .. | ||
| generate.py | ||
| README.md | ||
| streamchat.py | ||
ChatGLM3
In this directory, you will find examples on how you could use IPEX-LLM optimize_model API to accelerate ChatGLM3 models. For illustration purposes, we utilize the THUDM/chatglm3-6b as reference ChatGLM3 models.
Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to here for more information.
Example 1: Predict Tokens using generate() API
In the example generate.py, we show a basic use case for a ChatGLM3 model to predict the next N tokens using generate() API, with IPEX-LLM INT4 optimizations on Intel GPUs.
1. Install
1.1 Installation on Linux
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to here.
After installing conda, create a Python environment for IPEX-LLM:
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
1.2 Installation on Windows
We suggest using conda to manage environment:
conda create -n llm python=3.9 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
2. Configures OneAPI environment variables
2.1 Configurations for Linux
source /opt/intel/oneapi/setvars.sh
2.2 Configurations for Windows
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
Note: Please make sure you are using CMD (Anaconda Prompt if using conda) to run the command as PowerShell is not supported.
3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
3.1 Configurations for Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export ENABLE_SDP_FUSION=1
Note: Please note that
libtcmalloc.socan be installed byconda install -c conda-forge -y gperftools=2.10.
3.2 Configurations for Windows
For Intel iGPU
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
For Intel Arc™ A300-Series or Pro A60
set SYCL_CACHE_PERSISTENT=1
For other Intel dGPU Series
There is no need to set further environment variables.
Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
4. Running examples
python ./generate.py --prompt 'AI是什么?'
In the example, several arguments can be passed to satisfy your requirements:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the huggingface repo id for the ChatGLM3 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'THUDM/chatglm3-6b'.--prompt PROMPT: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be'AI是什么?'.--n-predict N_PREDICT: argument defining the max number of tokens to predict. It is default to be32.
4.1 Sample Output
THUDM/chatglm3-6b
Inference time: xxxx s
-------------------- Output --------------------
[gMASK]sop <|user|>
AI是什么?
<|assistant|> AI是人工智能(Artificial Intelligence)的缩写,指通过计算机程序或机器学习算法来模拟、延伸或扩展人类智能的技术。AI旨在
Inference time: xxxx s
-------------------- Output --------------------
[gMASK]sop <|user|>
What is AI?
<|assistant|>
AI stands for Artificial Intelligence. It refers to the development of computer systems or machines that can perform tasks that would normally require human intelligence, such as recognizing patterns
Example 2: Stream Chat using stream_chat() API
In the example streamchat.py, we show a basic use case for a ChatGLM3 model to stream chat, with IPEX-LLM INT4 optimizations.
1. Install
1.1 Installation on Linux
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to here.
After installing conda, create a Python environment for IPEX-LLM:
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
1.2 Installation on Windows
We suggest using conda to manage environment:
conda create -n llm python=3.9 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
2. Configures OneAPI environment variables
2.1 Configurations for Linux
source /opt/intel/oneapi/setvars.sh
2.2 Configurations for Windows
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
Note: Please make sure you are using CMD (Anaconda Prompt if using conda) to run the command as PowerShell is not supported.
3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
3.1 Configurations for Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export ENABLE_SDP_FUSION=1
Note: Please note that
libtcmalloc.socan be installed byconda install -c conda-forge -y gperftools=2.10.
For Intel iGPU
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
For Intel Arc™ A300-Series or Pro A60
set SYCL_CACHE_PERSISTENT=1
For other Intel dGPU Series
There is no need to set further environment variables.
Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
4. Running examples
Stream Chat using stream_chat() API:
python ./streamchat.py
Chat using chat() API:
python ./streamchat.py --disable-stream
In the example, several arguments can be passed to satisfy your requirements:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the huggingface repo id for the ChatGLM3 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'THUDM/chatglm3-6b'.--question QUESTION: argument defining the question to ask. It is default to be"晚上睡不着应该怎么办".--disable-stream: argument defining whether to stream chat. If include--disable-streamwhen running the script, the stream chat is disabled andchat()API is used.