77 lines
3.4 KiB
Python
77 lines
3.4 KiB
Python
|
|
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import torch
|
|
import time
|
|
import argparse
|
|
|
|
from ipex_llm.transformers import AutoModelForCausalLM, init_pipeline_parallel
|
|
from transformers import AutoTokenizer
|
|
|
|
init_pipeline_parallel()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-13b-chat-hf",
|
|
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
|
|
help='Prompt to infer')
|
|
parser.add_argument('--n-predict', type=int, default=32,
|
|
help='Max tokens to predict')
|
|
parser.add_argument('--gpu-num', type=int, default=2, help='GPU number to use')
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
load_in_4bit=True,
|
|
optimize_model=True,
|
|
trust_remote_code=True,
|
|
use_cache=True,
|
|
pipeline_parallel_stages=args.gpu_num)
|
|
|
|
# Load tokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
local_rank = torch.distributed.get_rank()
|
|
|
|
# Generate predicted tokens
|
|
with torch.inference_mode():
|
|
input_ids = tokenizer.encode(args.prompt, return_tensors="pt").to(f'xpu:{local_rank}')
|
|
# ipex_llm model needs a warmup, then inference time can be accurate
|
|
output = model.generate(input_ids,
|
|
max_new_tokens=args.n_predict)
|
|
|
|
# start inference
|
|
st = time.time()
|
|
output = model.generate(input_ids,
|
|
max_new_tokens=args.n_predict)
|
|
torch.xpu.synchronize()
|
|
end = time.time()
|
|
output = output.cpu()
|
|
if local_rank == args.gpu_num - 1:
|
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
print(f'Inference time: {end-st} s')
|
|
print(f"First token cost {model.first_token_time:.4f} s and rest tokens cost average {model.rest_cost_mean:.4f} s")
|
|
print('-'*20, 'Prompt', '-'*20)
|
|
print(args.prompt)
|
|
print('-'*20, 'Output', '-'*20)
|
|
print(output_str)
|
|
|