ipex-llm/python/llm/portable-zip/chat.py
Jiao Wang a9a6b6b7af
Fix baichuan-13b issue on portable zip under transformers 4.36 (#10746)
* fix baichuan-13b issue

* update

* update
2024-04-12 16:27:01 -07:00

359 lines
15 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/mit-han-lab/streaming-llm/blob/main/examples/run_streaming_llama.py
# which is licensed under the MIT license:
#
# MIT License
#
# Copyright (c) 2023 MIT HAN Lab
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch
import argparse
import sys
# todo: support more model class
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, AutoConfig
from transformers import TextIteratorStreamer
from transformers.tools.agents import StopSequenceCriteria
from transformers.generation.stopping_criteria import StoppingCriteriaList
from colorama import Fore
from ipex_llm import optimize_model
from kv_cache import StartRecentKVCache
HUMAN_ID = "<human>"
BOT_ID = "<bot>"
def get_stop_words_ids(chat_format, tokenizer):
# https://github.com/QwenLM/Qwen/blob/main/examples/vllm_wrapper.py#L23
if chat_format == "Qwen":
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id], [tokenizer.eod_id]]
# https://huggingface.co/01-ai/Yi-6B-Chat/blob/main/tokenizer_config.json#L38
elif chat_format == "Yi":
stop_words_ids = [tokenizer.encode("<|im_end|>")]
else:
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
return stop_words_ids
@torch.no_grad()
def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len, stop_words=[]):
print(Fore.BLUE+"IPEX-LLM: "+Fore.RESET, end="")
outputs = model(
input_ids=input_ids,
past_key_values=past_key_values,
use_cache=True,
)
past_key_values = outputs.past_key_values
pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
generated_ids = [pred_token_idx.item()]
pos = 0
stop = False
for _ in range(max_gen_len - 1):
outputs = model(
input_ids=pred_token_idx,
past_key_values=past_key_values,
use_cache=True,
)
past_key_values = outputs.past_key_values
pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
generated_ids.append(pred_token_idx.item())
if stop_words is not None:
for stop_str in stop_words:
if generated_ids[-1 * len(stop_str):] == stop_str:
stop = True
break
if stop:
break
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True,
clean_up_tokenization_spaces=True,
spaces_between_special_tokens=False)
now = len(generated_text) - 1
if now > pos:
if '\n<' in generated_text:
break
else:
print("".join(generated_text[pos:now]), end="", flush=True)
pos = now
if pred_token_idx == tokenizer.eos_token_id:
break
print(" ".join(generated_text[pos:]).strip('\n<'), flush=True)
return past_key_values
@torch.no_grad()
def stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]):
past_key_values = None
while True:
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
# let's stop the conversation when user input "stop"
if user_input == "stop":
break
prompt = f"{HUMAN_ID} {user_input}\n{BOT_ID} "
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
seq_len = input_ids.shape[1]
if kv_cache is not None:
space_needed = seq_len + max_gen_len
past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
past_key_values = greedy_generate(
model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
)
@torch.no_grad()
def chatglm3_stream_chat(model, tokenizer):
chat_history = []
past_key_values = None
current_length = 0
# https://github.com/THUDM/ChatGLM3/issues/274#issuecomment-1810160305
stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(["<|user|>", "<|observation|>"], tokenizer)])
# you could change this according to your memory requirement
max_past_length = 512
block_length = 512
while True:
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
# let's stop the conversation when user input "stop"
if user_input == "stop":
break
print(Fore.BLUE+"IPEX-LLM: "+Fore.RESET, end="")
# https://github.com/THUDM/ChatGLM3/blob/main/PROMPT_en.md
prompt = f"""
<|system|>
You are an intelligent AI assistant, named ChatGLM3. Follow the user's instructions carefully.
<|user|>
{user_input}
<|assistant|>
"""
if past_key_values is not None and past_key_values[0][0].shape[0] > max_past_length + block_length:
# To avoid out of memory, only keep recent key_values of max_past_length
past_key_values = [(k[-max_past_length:, :, :, :], v[-max_past_length:, :, :, :]) for k, v in past_key_values]
for response, chat_history, past_key_values in model.stream_chat(tokenizer, prompt,
history=chat_history,
stopping_criteria=stopping_criteria,
past_key_values=past_key_values,
return_past_key_values=True):
print(response[current_length:], end="", flush=True)
current_length = len(response)
@torch.no_grad()
def qwen_stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]):
past_key_values = None
while True:
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
# let's stop the conversation when user input "stop"
if user_input == "stop":
break
# https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/generation_config.json#L2
prompt = f"""
<|im_start|>system
You are a helpful assistant.
<|im_end|>
<|im_start|>user
{user_input}
<|im_end|>
<|im_start|>assistant
"""
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
seq_len = input_ids.shape[1]
if kv_cache is not None:
space_needed = seq_len + max_gen_len
past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
past_key_values = greedy_generate(
model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
)
@torch.no_grad()
def llama_stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]):
past_key_values = None
while True:
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
# let's stop the conversation when user input "stop"
if user_input == "stop":
break
# https://huggingface.co/TheBloke/Llama-2-70B-Chat-GGML#prompt-template-llama-2-chat
prompt = f"""
[INST] <<SYS>>
You are a helpful assistant.
<</SYS>>
{user_input}[/INST]
"""
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
seq_len = input_ids.shape[1]
if kv_cache is not None:
space_needed = seq_len + max_gen_len
past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
past_key_values = greedy_generate(
model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
)
@torch.no_grad()
def yi_stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]):
past_key_values = None
while True:
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
# let's stop the conversation when user input "stop"
if user_input == "stop":
break
# https://huggingface.co/01-ai/Yi-6B-Chat#31-use-the-chat-model
prompt = f"""
<|im_start|>system
You are a helpful assistant. If you don't understand what the user means, ask the user to provide more information.
<|im_end|>
<|im_start|>user
{user_input}
<|im_end|>
<|im_start|>assistant
"""
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
seq_len = input_ids.shape[1]
if kv_cache is not None:
space_needed = seq_len + max_gen_len
past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
past_key_values = greedy_generate(
model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
)
def format_prompt_with_history(input_str,
chat_history):
SYSTEM_PROMPT = "A chat between a curious human <human> and an artificial intelligence assistant <bot>.\
The assistant gives helpful, detailed, and polite answers to the human's questions."
prompt = [f"{SYSTEM_PROMPT}\n"]
# prompt = []
for history_input_str, history_output_str in chat_history:
prompt.append(f"{HUMAN_ID} {history_input_str}\n{BOT_ID} {history_output_str}\n")
prompt.append(f"{HUMAN_ID} {input_str}\n{BOT_ID} ")
return "".join(prompt)
def stream_chat_with_history(model, tokenizer):
stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(HUMAN_ID, tokenizer)])
chat_history = []
while True:
with torch.inference_mode():
user_input = input(Fore.GREEN + "\nHuman: " + Fore.RESET)
if user_input == "stop": # let's stop the conversation when user input "stop"
break
prompt = format_prompt_with_history(user_input, chat_history)
# print(prompt)
input_ids = tokenizer([prompt], return_tensors="pt")
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(input_ids, streamer=streamer, max_new_tokens=512,
stopping_criteria=stopping_criteria)
from threading import Thread
# to ensure non-blocking access to the generated text, generation process should be ran in a separate thread
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
output_str = []
print(Fore.BLUE + "IPEX-LLM: " + Fore.RESET, end="")
for partial_output_str in streamer:
output_str.append(partial_output_str)
# remove the last HUMAN_ID if exists
print(partial_output_str.replace(f"{HUMAN_ID}", ""), end="")
chat_history.append((user_input, "".join(output_str).replace(f"{HUMAN_ID}", "").rstrip()))
def auto_select_model(model_name):
try:
try:
model = AutoModelForCausalLM.from_pretrained(model_path,
low_cpu_mem_usage=True,
torch_dtype="auto",
trust_remote_code=True,
use_cache=True)
except:
model = AutoModel.from_pretrained(model_path,
low_cpu_mem_usage=True,
torch_dtype="auto",
trust_remote_code=True,
use_cache=True)
except:
print("Sorry, the model you entered is not supported in installer.")
sys.exit()
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, help="path to an llm")
parser.add_argument("--start-size", type=int, default=4, help="start_size of kv_cahce")
parser.add_argument("--recent-size", type=int, default=2000)
args = parser.parse_args()
model_path = args.model_path
start_size = args.start_size
recent_size = args.recent_size
model = auto_select_model(model_path)
model = optimize_model(model)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
if model.config.architectures is not None and model.config.architectures[0] == "QWenLMHeadModel":
stop_words = get_stop_words_ids("Qwen", tokenizer=tokenizer)
kv_cache = StartRecentKVCache(start_size=start_size,
k_seq_dim=1,
v_seq_dim=1,
recent_size=recent_size)
qwen_stream_chat(model=model, tokenizer=tokenizer,kv_cache=kv_cache, stop_words=stop_words)
elif model.config.architectures is not None and model.config.architectures[0] == "ChatGLMModel":
chatglm3_stream_chat(model=model, tokenizer=tokenizer)
elif model.config.architectures is not None and model.config.architectures[0] == "LlamaForCausalLM":
kv_cache = StartRecentKVCache(start_size=start_size, recent_size=recent_size)
if "yi" in model_path.lower():
stop_words = get_stop_words_ids("Yi", tokenizer=tokenizer)
yi_stream_chat(model=model, tokenizer=tokenizer, kv_cache=kv_cache, stop_words=stop_words)
else:
llama_stream_chat(model=model, tokenizer=tokenizer, kv_cache=kv_cache)
elif model.config.architectures[0] == "BaichuanForCausalLM" and model.config.vocab_size == 64000:
# Baichuan-13B-Chat
stream_chat_with_history(model=model, tokenizer=tokenizer)
else:
kv_cache = StartRecentKVCache(start_size=start_size, recent_size=recent_size)
stream_chat(model=model,
tokenizer=tokenizer,
kv_cache=kv_cache)