* model to fp16 & 2_6 reorganize * revisions * revisions * half * deleted transformer version requirements * deleted transformer version requirements --------- Co-authored-by: ivy-lv11 <zhicunlv@gmail.com>
		
			
				
	
	
		
			83 lines
		
	
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			83 lines
		
	
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import os
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
import requests
 | 
						|
from PIL import Image
 | 
						|
from ipex_llm.transformers import AutoModel
 | 
						|
from transformers import AutoTokenizer
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for openbmb/MiniCPM-Llama3-V-2_5 model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-Llama3-V-2_5",
 | 
						|
                        help='The huggingface repo id for the openbmb/MiniCPM-Llama3-V-2_5 model to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--image-url-or-path', type=str,
 | 
						|
                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
 | 
						|
                        help='The URL or path to the image to infer')
 | 
						|
    parser.add_argument('--prompt', type=str, default="What is in the image?",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
    image_path = args.image_url_or_path
 | 
						|
    
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
						|
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
						|
    model = AutoModel.from_pretrained(model_path, 
 | 
						|
                                      load_in_4bit=True,
 | 
						|
                                      optimize_model=False,
 | 
						|
                                      trust_remote_code=True,
 | 
						|
                                      use_cache=True)
 | 
						|
    model = model.half().to(device='xpu')
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
						|
                                              trust_remote_code=True)
 | 
						|
    model.eval()
 | 
						|
 | 
						|
    query = args.prompt
 | 
						|
    if os.path.exists(image_path):
 | 
						|
       image = Image.open(image_path).convert('RGB')
 | 
						|
    else:
 | 
						|
       image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
 | 
						|
 | 
						|
    # Generate predicted tokens
 | 
						|
    # here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5/blob/main/README.md
 | 
						|
    msgs = [{'role': 'user', 'content': args.prompt}]
 | 
						|
    st = time.time()
 | 
						|
    res = model.chat(
 | 
						|
     image=image,
 | 
						|
     msgs=msgs,
 | 
						|
     context=None,
 | 
						|
     tokenizer=tokenizer,
 | 
						|
     sampling=False,
 | 
						|
     temperature=0.7
 | 
						|
    )
 | 
						|
    end = time.time()
 | 
						|
    print(f'Inference time: {end-st} s')
 | 
						|
    print('-'*20, 'Input', '-'*20)
 | 
						|
    print(image_path)
 | 
						|
    print('-'*20, 'Prompt', '-'*20)
 | 
						|
    print(args.prompt)
 | 
						|
    output_str = res
 | 
						|
    print('-'*20, 'Output', '-'*20)
 | 
						|
    print(output_str)
 |