73 lines
		
	
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			73 lines
		
	
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
import os, time
 | 
						|
import pytest
 | 
						|
 | 
						|
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel, AutoModelForSpeechSeq2Seq
 | 
						|
from transformers import LlamaTokenizer, AutoTokenizer
 | 
						|
 | 
						|
device = os.environ['DEVICE']
 | 
						|
print(f'Running on {device}')
 | 
						|
if device == 'xpu':
 | 
						|
    import intel_extension_for_pytorch as ipex
 | 
						|
 | 
						|
@pytest.mark.parametrize('prompt, answer', [
 | 
						|
    ('What is the capital of France?\n\n', 'Paris')
 | 
						|
    ])
 | 
						|
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
 | 
						|
    (AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH')),
 | 
						|
    (AutoModel, AutoTokenizer, os.environ.get('CHATGLM2_6B_ORIGIN_PATH')),
 | 
						|
    (AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH')),
 | 
						|
    (AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
 | 
						|
    ])
 | 
						|
def test_completion(Model, Tokenizer, model_path, prompt, answer):
 | 
						|
    tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    model = Model.from_pretrained(model_path,
 | 
						|
                                load_in_4bit=True,
 | 
						|
                                optimize_model=True,
 | 
						|
                                trust_remote_code=True)
 | 
						|
    model = model.to(device)
 | 
						|
 | 
						|
    input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
 | 
						|
    output = model.generate(input_ids, max_new_tokens=32)
 | 
						|
    model.to('cpu')   # deallocate gpu memory
 | 
						|
    output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
 | 
						|
    assert answer in output_str
 | 
						|
 | 
						|
def test_transformers_auto_model_for_speech_seq2seq_int4():
 | 
						|
    from transformers import WhisperProcessor
 | 
						|
    from datasets import load_from_disk
 | 
						|
    model_path = os.environ.get('WHISPER_TINY_ORIGIN_PATH')
 | 
						|
    dataset_path = os.environ.get('SPEECH_DATASET_PATH')
 | 
						|
    processor = WhisperProcessor.from_pretrained(model_path)
 | 
						|
    ds = load_from_disk(dataset_path)
 | 
						|
    sample = ds[0]["audio"]
 | 
						|
    input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
 | 
						|
    input_features = input_features.to(device)
 | 
						|
    model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True, optimize_model=True)
 | 
						|
    model = model.to(device)
 | 
						|
    predicted_ids = model.generate(input_features)
 | 
						|
    # decode token ids to text
 | 
						|
    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
 | 
						|
    model.to('cpu')      
 | 
						|
    print('Output:', transcription)
 | 
						|
    assert 'Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' in transcription[0]
 | 
						|
        
 | 
						|
if __name__ == '__main__':
 | 
						|
    pytest.main([__file__])
 |