* add exclude option in all-in-one perf test * update arc-perf-test.yaml * Exclude in_out_pairs in main function * fix some bugs * address Kai's comments * define excludes at the beginning * add bloomz:2048 to exclude
771 lines
38 KiB
Python
771 lines
38 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
|
|
# this code is copied from llama2 example test, and added performance test
|
|
import torch
|
|
import time
|
|
import gc
|
|
import traceback
|
|
|
|
import numpy as np
|
|
from datetime import date
|
|
|
|
import os
|
|
current_dir = os.path.dirname(os.path.realpath(__file__))
|
|
benchmark_util_path = os.path.join(current_dir, '..')
|
|
import sys
|
|
sys.path.append(benchmark_util_path)
|
|
from benchmark_util import BenchmarkWrapper
|
|
from bigdl.llm.utils.common.log4Error import invalidInputError
|
|
|
|
LLAMA_IDS = ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
|
|
'meta-llama/Llama-2-70b-chat-hf','decapoda-research/llama-7b-hf',
|
|
'decapoda-research/llama-65b-hf','lmsys/vicuna-7b-v1.5',
|
|
'lmsys/vicuna-13b-v1.3','project-baize/merged-baize-30b']
|
|
|
|
CHATGLM_IDS = ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b', 'THUDM/chatglm3-6b']
|
|
|
|
LLAVA_IDS = ['liuhaotian/llava-v1.5-7b']
|
|
|
|
results = []
|
|
excludes = []
|
|
|
|
|
|
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False):
|
|
# TODO: make a parameter
|
|
result= {}
|
|
if test_api == 'transformer_int4':
|
|
result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
|
|
elif test_api == 'native_int4':
|
|
run_native_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
|
elif test_api == 'optimize_model':
|
|
result = run_optimize_model(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
|
|
elif test_api == 'transformer_int4_gpu':
|
|
result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
|
|
elif test_api == 'optimize_model_gpu':
|
|
result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
|
|
elif test_api == 'pytorch_autocast_bf16':
|
|
result = run_pytorch_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
|
|
elif test_api == 'ipex_fp16_gpu':
|
|
result = run_ipex_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
|
|
elif test_api == 'deepspeed_transformer_int4_cpu':
|
|
result = run_deepspeed_transformer_int4_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
|
|
elif test_api == 'transformer_int4_gpu_win':
|
|
result = run_transformer_int4_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding)
|
|
|
|
for in_out_pair in in_out_pairs:
|
|
if result and result[in_out_pair]:
|
|
results.append([repo_id,
|
|
round(np.mean(result[in_out_pair], axis=0)[0]*1000.0, 2),
|
|
round(np.mean(result[in_out_pair], axis=0)[1]*1000.0, 2),
|
|
round(np.mean(result[in_out_pair], axis=0)[2]*1000.0, 2),
|
|
in_out_pair,
|
|
f'{int(np.mean(result[in_out_pair], axis=0)[3])}' +
|
|
f'-{int(np.mean(result[in_out_pair], axis=0)[4])}',
|
|
num_beams,
|
|
low_bit,
|
|
cpu_embedding if 'win' in test_api else 'N/A',
|
|
result[in_out_pair][-1][5] if 'win' in test_api else 'N/A']) # currently only peak mem for win gpu is caught here
|
|
|
|
|
|
def get_model_path(repo_id, local_model_hub):
|
|
if local_model_hub:
|
|
repo_model_name = repo_id.split("/")[1]
|
|
local_model_path = local_model_hub + os.path.sep + repo_model_name
|
|
invalidInputError(os.path.isdir(local_model_path),
|
|
local_model_path + " not exists!, Please check your models' folder.")
|
|
return local_model_path
|
|
else:
|
|
return repo_id
|
|
|
|
|
|
def run_native_int4(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials):
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
from bigdl.llm.transformers import BigdlNativeForCausalLM
|
|
from bigdl.llm import llm_convert
|
|
if "chatglm" in repo_id.lower():
|
|
family = "chatglm"
|
|
elif "llama" in repo_id.lower():
|
|
family = "llama"
|
|
else:
|
|
invalidInputError(False, "Model family unknown: " + repo_id)
|
|
|
|
bigdl_llm_path = llm_convert(model=model_path,
|
|
outfile="./", outtype='int4', model_family=family)
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = open(f"prompt/{in_len}.txt", 'r').read()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
n_ctx = in_len + out_len if in_len + out_len > 512 else 512
|
|
for i in range(num_trials + warm_up):
|
|
model = BigdlNativeForCausalLM.from_pretrained(bigdl_llm_path, model_family=family, n_ctx=n_ctx)
|
|
input_ids = model.tokenize(input_str)
|
|
input_ids = input_ids[:in_len]
|
|
true_input = model.batch_decode(input_ids)
|
|
st = time.perf_counter()
|
|
output = model(true_input, max_tokens=out_len)
|
|
end = time.perf_counter()
|
|
print("model generate cost: " + str(end - st))
|
|
print(output)
|
|
|
|
os.remove(bigdl_llm_path)
|
|
|
|
|
|
def run_transformer_int4(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit):
|
|
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, LlamaTokenizer
|
|
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype='auto')
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
|
use_cache=True)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
|
use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
end = time.perf_counter()
|
|
print(">> loading of model costs {}s".format(end - st))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
# As different tokenizer has different encodings,
|
|
# in_len.txt maybe shorter than we need,
|
|
# use much longer context to make sure input length
|
|
test_length = min(in_len*2, 8192)
|
|
while test_length not in [32, 256, 1024, 2048, 8192]:
|
|
test_length = test_length * 2
|
|
input_str = open(f"prompt/{test_length}.txt", 'r').read()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_ids = tokenizer.encode(true_str, return_tensors="pt")
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
num_beams=num_beams)
|
|
end = time.perf_counter()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len])
|
|
return result
|
|
|
|
def run_pytorch_autocast_bf16(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams):
|
|
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, LlamaTokenizer
|
|
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
# TODO: need verify chatglm family run bf16.
|
|
print("Currently pytorch do not support bfloat16 on cpu for chatglm models. Will skip it")
|
|
return
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16,
|
|
use_cache=True)
|
|
# Need to use LlamaTokenizer, reason please refer to issue: https://github.com/intel-analytics/BigDL/issues/8944
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16,
|
|
use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
end = time.perf_counter()
|
|
print(">> loading of model costs {}s".format(end - st))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
result = {}
|
|
with torch.inference_mode(), torch.autocast("cpu"):
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
# As different tokenizer has different encodings,
|
|
# in_len.txt maybe shorter than we need,
|
|
# use much longer context to make sure input length
|
|
test_length = min(in_len*2, 8192)
|
|
while test_length not in [32, 256, 1024, 2048, 8192]:
|
|
test_length = test_length * 2
|
|
input_str = open(f"prompt/{test_length}.txt", 'r').read()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_ids = tokenizer.encode(true_str, return_tensors="pt")
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
print("input tokens: {}".format(input_ids.shape[1]))
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
num_beams=num_beams)
|
|
end = time.perf_counter()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len])
|
|
return result
|
|
|
|
def run_optimize_model(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit):
|
|
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer
|
|
from bigdl.llm import optimize_model
|
|
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True)
|
|
model = optimize_model(model, low_bit=low_bit)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
|
use_cache=True, low_cpu_mem_usage=True)
|
|
model = optimize_model(model, low_bit=low_bit)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True)
|
|
model = optimize_model(model, low_bit=low_bit)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
end = time.perf_counter()
|
|
print(">> loading of model costs {}s".format(end - st))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
# As different tokenizer has different encodings,
|
|
# in_len.txt maybe shorter than we need,
|
|
# use much longer context to make sure input length
|
|
test_length = min(in_len*2, 8192)
|
|
while test_length not in [32, 256, 1024, 2048, 8192]:
|
|
test_length = test_length * 2
|
|
input_str = open(f"prompt/{test_length}.txt", 'r').read()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_ids = tokenizer.encode(true_str, return_tensors="pt")
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
num_beams=num_beams)
|
|
end = time.perf_counter()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len])
|
|
return result
|
|
|
|
|
|
def run_transformer_int4_gpu(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit):
|
|
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
|
import intel_extension_for_pytorch as ipex
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
|
trust_remote_code=True, use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
|
use_cache=True)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
|
trust_remote_code=True, use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
if isinstance(model, GPTJForCausalLM):
|
|
# For gpt-j model family, this optimization can provide a better performance.
|
|
model = ipex.optimize(model.eval(), inplace=True)
|
|
end = time.perf_counter()
|
|
print(">> loading of model costs {}s".format(end - st))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
try:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
# As different tokenizer has different encodings,
|
|
# in_len.txt maybe shorter than we need,
|
|
# use much longer context to make sure input length
|
|
test_length = min(in_len*2, 8192)
|
|
while test_length not in [32, 256, 1024, 2048, 8192]:
|
|
test_length = test_length * 2
|
|
input_str = open(f"prompt/{test_length}.txt", 'r').read()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
num_beams=num_beams)
|
|
torch.xpu.synchronize()
|
|
end = time.perf_counter()
|
|
output_ids = output_ids.cpu()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len])
|
|
except RuntimeError:
|
|
traceback.print_exc()
|
|
pass
|
|
del model
|
|
torch.xpu.empty_cache()
|
|
return result
|
|
|
|
|
|
def run_optimize_model_gpu(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit):
|
|
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
|
from bigdl.llm import optimize_model
|
|
import intel_extension_for_pytorch as ipex
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True,
|
|
trust_remote_code=True, use_cache=True)
|
|
model = optimize_model(model, low_bit=low_bit)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
|
use_cache=True, low_cpu_mem_usage=True)
|
|
model = optimize_model(model, low_bit=low_bit)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True,
|
|
trust_remote_code=True, use_cache=True)
|
|
model = optimize_model(model, low_bit=low_bit)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
if isinstance(model, GPTJForCausalLM):
|
|
# For gpt-j model family, this optimization can provide a better performance.
|
|
model = ipex.optimize(model.eval(), inplace=True)
|
|
end = time.perf_counter()
|
|
print(">> loading of model costs {}s".format(end - st))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
# As different tokenizer has different encodings,
|
|
# in_len.txt maybe shorter than we need,
|
|
# use much longer context to make sure input length
|
|
test_length = min(in_len*2, 8192)
|
|
while test_length not in [32, 256, 1024, 2048, 8192]:
|
|
test_length = test_length * 2
|
|
input_str = open(f"prompt/{test_length}.txt", 'r').read()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
num_beams=num_beams)
|
|
torch.xpu.synchronize()
|
|
end = time.perf_counter()
|
|
output_ids = output_ids.cpu()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
print(output[0])
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len])
|
|
del model
|
|
torch.xpu.empty_cache()
|
|
return result
|
|
|
|
|
|
def run_ipex_fp16_gpu(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams):
|
|
from transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
|
import intel_extension_for_pytorch as ipex
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.half().to('xpu')
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
|
use_cache=True)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.half().to('xpu')
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.half().to('xpu')
|
|
if isinstance(model, GPTJForCausalLM):
|
|
# For gpt-j model family, this optimization can provide a better performance.
|
|
model = ipex.optimize(model.eval(), inplace=True)
|
|
end = time.perf_counter()
|
|
print(">> loading of model costs {}s".format(end - st))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
# As different tokenizer has different encodings,
|
|
# in_len.txt maybe shorter than we need,
|
|
# use much longer context to make sure input length
|
|
test_length = min(in_len*2, 8192)
|
|
while test_length not in [32, 256, 1024, 2048, 8192]:
|
|
test_length = test_length * 2
|
|
input_str = open(f"prompt/{test_length}.txt", 'r').read()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
num_beams=num_beams)
|
|
torch.xpu.synchronize()
|
|
end = time.perf_counter()
|
|
output_ids = output_ids.cpu()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
print(output[0])
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len])
|
|
del model
|
|
torch.xpu.empty_cache()
|
|
return result
|
|
|
|
def run_deepspeed_transformer_int4_cpu(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit):
|
|
from transformers import AutoModelForCausalLM, LlamaTokenizer, AutoTokenizer
|
|
import deepspeed
|
|
from bigdl.llm import optimize_model
|
|
import argparse
|
|
# parser is for deepspeed subprocesses' inline parameter
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
|
|
parser.add_argument('--local_rank', type=str, default=0, help='this is automatically set when using deepspeed launcher')
|
|
args = parser.parse_args()
|
|
local_rank = int(os.getenv("RANK", "1"))
|
|
if local_rank == -1:
|
|
local_rank = args.local_rank
|
|
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
|
|
st = time.perf_counter()
|
|
# Note: only tested cpu Llama2-7b
|
|
# Native Huggingface transformers loading to enable deepspeed init
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
|
use_cache=True)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
# Parallelize model on deepspeed
|
|
model = deepspeed.init_inference(model, mp_size=world_size,
|
|
dtype=torch.float16,
|
|
replace_method="auto")
|
|
|
|
# Apply BigDL-LLM INT4 optimization to enable BenchmarkWrapper
|
|
# Note: only tested sym_int4
|
|
model = optimize_model(model.module.to(f'cpu'), low_bit=low_bit)
|
|
model = model.to(f'cpu:{local_rank}')
|
|
|
|
end = time.perf_counter()
|
|
print(">> loading of model costs {}s".format(end - st))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
# As different tokenizer has different encodings,
|
|
# in_len.txt maybe shorter than we need,
|
|
# use much longer context to make sure input length
|
|
test_length = min(in_len*2, 8192)
|
|
while test_length not in [32, 256, 1024, 2048, 8192]:
|
|
test_length = test_length * 2
|
|
input_str = open(f"prompt/{test_length}.txt", 'r').read()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_ids = tokenizer.encode(true_str, return_tensors="pt")
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
num_beams=num_beams)
|
|
end = time.perf_counter()
|
|
if local_rank == 0:
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
if local_rank == 0:
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up :
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len])
|
|
return result
|
|
|
|
|
|
def run_transformer_int4_gpu_win(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit,
|
|
cpu_embedding):
|
|
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
|
import intel_extension_for_pytorch as ipex
|
|
reserved_mem_list = []
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
|
use_cache=True, cpu_embedding=cpu_embedding)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in LLAVA_IDS:
|
|
llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
|
|
sys.path.append(rf"{llava_repo_dir}")
|
|
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
if isinstance(model, GPTJForCausalLM):
|
|
# For gpt-j model family, this optimization can provide a better performance.
|
|
model = ipex.optimize(model.eval(), inplace=True)
|
|
end = time.perf_counter()
|
|
print(">> loading of model costs {}s".format(end - st))
|
|
reserved_mem_list.append(torch.xpu.memory.memory_reserved()/(1024**3))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
try:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
# As different tokenizer has different encodings,
|
|
# in_len.txt maybe shorter than we need,
|
|
# use much longer context to make sure input length
|
|
test_length = min(in_len*2, 8192)
|
|
while test_length not in [32, 256, 1024, 2048, 8192]:
|
|
test_length = test_length * 2
|
|
input_str = open(f"prompt/{test_length}.txt", 'r').read()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
num_beams=num_beams)
|
|
torch.xpu.synchronize()
|
|
end = time.perf_counter()
|
|
reserved_mem_list.append(torch.xpu.memory.memory_reserved()/(1024**3))
|
|
gpu_peak_mem = max(reserved_mem_list) # always keep the peak gpu mem at current stage
|
|
output_ids = output_ids.cpu()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len, gpu_peak_mem])
|
|
# torch.xpu.empty_cache() # this may make first token slower
|
|
except RuntimeError:
|
|
traceback.print_exc()
|
|
pass
|
|
model.to('cpu')
|
|
torch.xpu.synchronize()
|
|
torch.xpu.empty_cache()
|
|
del model
|
|
gc.collect()
|
|
return result
|
|
|
|
if __name__ == '__main__':
|
|
from omegaconf import OmegaConf
|
|
conf = OmegaConf.load(f'{current_dir}/config.yaml')
|
|
today = date.today()
|
|
if 'exclude' in conf:
|
|
excludes = conf['exclude']
|
|
|
|
import pandas as pd
|
|
for api in conf.test_api:
|
|
for model in conf.repo_id:
|
|
in_out_pairs = conf['in_out_pairs'].copy()
|
|
if excludes:
|
|
for in_out in conf['in_out_pairs']:
|
|
model_id_input = model + ':' + in_out.split('-')[0]
|
|
if model_id_input in excludes:
|
|
in_out_pairs.remove(in_out)
|
|
run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
|
|
conf['low_bit'], conf['cpu_embedding'])
|
|
df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
|
|
'input/output tokens', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
|
|
'peak mem (GB)'])
|
|
|
|
df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
|
|
results = []
|