* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
		
			
				
	
	
		
			80 lines
		
	
	
		
			No EOL
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			80 lines
		
	
	
		
			No EOL
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch, transformers
 | 
						|
import sys, os, time
 | 
						|
import intel_extension_for_pytorch as ipex
 | 
						|
import argparse
 | 
						|
from transformers import LlamaTokenizer, AutoModelForCausalLM
 | 
						|
from ipex_llm import optimize_model
 | 
						|
 | 
						|
# Refer to https://huggingface.co/IEITYuan/Yuan2-2B-hf#Usage
 | 
						|
YUAN2_PROMPT_FORMAT = """
 | 
						|
{prompt}
 | 
						|
"""
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Generate text using Yuan2-2B model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="IEITYuan/Yuan2-2B-hf",
 | 
						|
                        help='The huggingface repo id for the Yuan2 to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
						|
                        help='Prompt for the model')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=100,
 | 
						|
                        help='Number of tokens to generate')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    # Load tokenizer
 | 
						|
    print("Creating tokenizer...")
 | 
						|
    tokenizer = LlamaTokenizer.from_pretrained(model_path, add_eos_token=False, add_bos_token=False, eos_token='<eod>')
 | 
						|
    tokenizer.add_tokens(['<sep>', '<pad>', '<mask>', '<predict>', '<FIM_SUFFIX>', '<FIM_PREFIX>', '<FIM_MIDDLE>','<commit_before>',
 | 
						|
                          '<commit_msg>','<commit_after>','<jupyter_start>','<jupyter_text>','<jupyter_code>','<jupyter_output>','<empty_output>'], special_tokens=True)
 | 
						|
 | 
						|
    # Load model
 | 
						|
    print("Creating model...")
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype='auto', low_cpu_mem_usage=True).eval()
 | 
						|
    
 | 
						|
    # With only one line to enable BigDL-LLM optimization on model
 | 
						|
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the optimize_model function.
 | 
						|
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
						|
    model = optimize_model(model)
 | 
						|
    # Convert the model to xpu
 | 
						|
    model = model.to('xpu')
 | 
						|
 | 
						|
    prompt = YUAN2_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
						|
    inputs = tokenizer(prompt, return_tensors="pt")["input_ids"]
 | 
						|
    # Convert the inputs to xpu
 | 
						|
    inputs = inputs.to('xpu')
 | 
						|
 | 
						|
    # Default warmup since the first generate() is slow
 | 
						|
    outputs = model.generate(inputs, do_sample=True, top_k=5, max_length=args.n_predict)
 | 
						|
    print('Finish warmup')
 | 
						|
 | 
						|
    # Measure the inference time
 | 
						|
    start_time = time.time()
 | 
						|
    # if your selected model is capable of utilizing previous key/value attentions
 | 
						|
    # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
						|
    # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
						|
    # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
						|
    outputs = model.generate(inputs, do_sample=True, top_k=5, max_length=args.n_predict)
 | 
						|
    end_time = time.time()
 | 
						|
 | 
						|
    output_str = tokenizer.decode(outputs[0])
 | 
						|
    print(f'Inference time: {end_time - start_time} seconds')
 | 
						|
    print('-'*20, 'Output', '-'*20)
 | 
						|
    print(output_str) |