ipex-llm/python/llm/test/inference/test_transformers_api.py
Wang, Jian4 9df70d95eb
Refactor bigdl.llm to ipex_llm (#24)
* Rename bigdl/llm to ipex_llm

* rm python/llm/src/bigdl

* from bigdl.llm to from ipex_llm
2024-03-22 15:41:21 +08:00

170 lines
7.6 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import os
import tempfile
import time
import torch
import pytest
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM, AutoModelForSpeechSeq2Seq
from transformers import AutoTokenizer, LlamaTokenizer
class TestTransformersAPI(unittest.TestCase):
def setUp(self):
thread_num = os.environ.get('THREAD_NUM')
if thread_num is not None:
self.n_threads = int(thread_num)
else:
self.n_threads = 2
def test_transformers_auto_model_int4(self):
model_path = os.environ.get('ORIGINAL_CHATGLM2_6B_PATH')
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
input_str = "Tell me the capital of France.\n\n"
with torch.inference_mode():
st = time.time()
input_ids = tokenizer.encode(input_str, return_tensors="pt")
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
end = time.time()
print('Prompt:', input_str)
print('Output:', output_str)
print(f'Inference time: {end-st} s')
res = 'Paris' in output_str
self.assertTrue(res)
def test_transformers_auto_model_for_causal_lm_int4(self):
model_path = os.environ.get('ORIGINAL_REPLIT_CODE_PATH')
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
input_str = 'def hello():\n print("hello world")\n'
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
with torch.inference_mode():
st = time.time()
input_ids = tokenizer.encode(input_str, return_tensors="pt")
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
end = time.time()
print('Prompt:', input_str)
print('Output:', output_str)
print(f'Inference time: {end-st} s')
res = '\nhello()' in output_str
self.assertTrue(res)
def test_transformers_auto_model_for_speech_seq2seq_int4(self):
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from datasets import load_from_disk
model_path = os.environ.get('ORIGINAL_WHISPER_TINY_PATH')
dataset_path = os.environ.get('SPEECH_DATASET_PATH')
processor = WhisperProcessor.from_pretrained(model_path)
ds = load_from_disk(dataset_path)
sample = ds[0]["audio"]
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
with torch.inference_mode():
st = time.time()
predicted_ids = model.generate(input_features)
# decode token ids to text
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
end = time.time()
print('Output:', transcription)
print(f'Inference time: {end-st} s')
res = 'Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' in transcription[0]
self.assertTrue(res)
def test_transformers_chatglm_for_causallm(self):
from ipex_llm.transformers import ChatGLMForCausalLM
model_path = os.environ.get('ORIGINAL_CHATGLM2_6B_PATH')
model = ChatGLMForCausalLM.from_pretrained(model_path, native=False, trust_remote_code=True, load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
input_str = "Tell me the capital of France.\n\n"
with torch.inference_mode():
st = time.time()
input_ids = tokenizer.encode(input_str, return_tensors="pt")
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
end = time.time()
print('Prompt:', input_str)
print('Output:', output_str)
print(f'Inference time: {end-st} s')
res = 'Paris' in output_str
self.assertTrue(res)
@pytest.mark.parametrize('prompt, answer', [
('What is the capital of France?\n\n', 'Paris')
])
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
(AutoModel, AutoTokenizer, os.environ.get('ORIGINAL_CHATGLM2_6B_PATH')),
])
def test_load_low_bit_completion(Model, Tokenizer, model_path, prompt, answer):
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True)
with tempfile.TemporaryDirectory() as tempdir:
model.save_low_bit(tempdir)
loaded_model = Model.load_low_bit(tempdir,
optimize_model=True,
trust_remote_code=True)
with torch.inference_mode():
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = loaded_model.generate(input_ids, max_new_tokens=32)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
assert answer in output_str
prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
@pytest.mark.parametrize("Model, Tokenizer, model_path, prompt", [
(AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA_ORIGIN_PATH'), prompt),
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('BLOOM_ORIGIN_PATH'), prompt),
(AutoModel, AutoTokenizer, os.environ.get('ORIGINAL_CHATGLM2_6B_PATH'), prompt),
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('ORIGINAL_REPLIT_CODE_PATH'), prompt)
])
def test_optimize_model(Model, Tokenizer, model_path, prompt):
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False,
trust_remote_code=True)
logits_base_model = (model(input_ids)).logits
model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True)
logits_optimized_model = (model(input_ids)).logits
diff = abs(logits_base_model - logits_optimized_model).flatten()
assert any(diff) is False
if __name__ == '__main__':
pytest.main([__file__])