ipex-llm/python/llm/example/langchain/docqa.py

90 lines
3.6 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
import argparse
from langchain.vectorstores import Chroma
from langchain.chains.chat_vector_db.prompts import (CONDENSE_QUESTION_PROMPT,
QA_PROMPT)
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from bigdl.llm.langchain.llms import BigdlNativeLLM
from bigdl.llm.langchain.embeddings import BigdlNativeEmbeddings
def main(args):
input_path = args.input_path
model_path = args.model_path
model_family = args.model_family
query = args.question
n_ctx = args.n_ctx
n_threads=args.thread_num
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
# split texts of input doc
with open(input_path) as f:
input_doc = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(input_doc)
# create embeddings and store into vectordb
embeddings = BigdlNativeEmbeddings(model_path=model_path, model_family=model_family, n_threads=n_threads, n_ctx=n_ctx)
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
#get relavant texts
docs = docsearch.get_relevant_documents(query)
bigdl_llm = BigdlNativeLLM(
model_path=model_path, model_family=model_family, n_ctx=n_ctx, n_threads=n_threads, callback_manager=callback_manager
)
doc_chain = load_qa_chain(
bigdl_llm, chain_type="stuff", prompt=QA_PROMPT, callback_manager=callback_manager
)
doc_chain.run(input_documents=docs, question=query)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='BigDL-LLM Langchain Question Answering over Docs Example')
parser.add_argument('-x','--model-family', type=str, required=True,
choices=["llama", "bloom", "gptneox"],
help='the model family')
parser.add_argument('-m','--model-path', type=str, required=True,
help='the path to the converted llm model')
parser.add_argument('-i', '--input-path', type=str, required=True,
help='the path to the input doc.')
parser.add_argument('-q', '--question', type=str, default='What is AI?',
help='qustion you want to ask.')
parser.add_argument('-c','--n-ctx', type=int, default=2048,
help='the maximum context size')
parser.add_argument('-t','--thread-num', type=int, default=2,
help='number of threads to use for inference')
args = parser.parse_args()
main(args)