* Add axolotl v0.3.0 support on Intel GPU. * Add finetune example on llama-2-7B with Alpaca dataset.
280 lines
8.7 KiB
Python
280 lines
8.7 KiB
Python
"""Prepare and train a model on a dataset. Can also infer from a model or merge lora"""
|
|
|
|
import importlib
|
|
import logging
|
|
import os
|
|
import random
|
|
import sys
|
|
from pathlib import Path
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
from ipex_llm import llm_patch
|
|
llm_patch(train=True)
|
|
import fire
|
|
import torch
|
|
import transformers
|
|
import yaml
|
|
|
|
# add src to the pythonpath so we don't need to pip install this
|
|
from art import text2art
|
|
from transformers import GenerationConfig, TextStreamer
|
|
|
|
from axolotl.common.cli import TrainerCliArgs, load_model_and_tokenizer
|
|
from axolotl.logging_config import configure_logging
|
|
from axolotl.train import TrainDatasetMeta, train
|
|
from axolotl.utils.config import normalize_config, validate_config
|
|
from axolotl.utils.data import prepare_dataset
|
|
from axolotl.utils.dict import DictDefault
|
|
from axolotl.utils.distributed import is_main_process
|
|
from axolotl.utils.models import load_tokenizer
|
|
from axolotl.utils.tokenization import check_dataset_labels
|
|
from axolotl.utils.wandb import setup_wandb_env_vars
|
|
|
|
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
|
src_dir = os.path.join(project_root, "src")
|
|
sys.path.insert(0, src_dir)
|
|
|
|
configure_logging()
|
|
LOG = logging.getLogger("axolotl.scripts")
|
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
|
|
|
|
|
def print_axolotl_text_art(suffix=None):
|
|
font = "nancyj"
|
|
ascii_text = " axolotl"
|
|
if suffix:
|
|
ascii_text += f" x {suffix}"
|
|
ascii_art = text2art(" axolotl", font=font)
|
|
|
|
if is_main_process():
|
|
print(ascii_art)
|
|
|
|
|
|
def get_multi_line_input() -> Optional[str]:
|
|
print("Give me an instruction (Ctrl + D to finish): ")
|
|
instruction = ""
|
|
for line in sys.stdin:
|
|
instruction += line # pylint: disable=consider-using-join
|
|
# instruction = pathlib.Path("/proc/self/fd/0").read_text()
|
|
return instruction
|
|
|
|
|
|
def do_merge_lora(
|
|
*,
|
|
cfg: DictDefault,
|
|
cli_args: TrainerCliArgs,
|
|
):
|
|
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
|
|
safe_serialization = cfg.save_safetensors is True
|
|
|
|
LOG.info("running merge of LoRA with base model")
|
|
model = model.merge_and_unload()
|
|
model.to(dtype=torch.float16)
|
|
|
|
if cfg.local_rank == 0:
|
|
LOG.info("saving merged model")
|
|
model.save_pretrained(
|
|
str(Path(cfg.output_dir) / "merged"),
|
|
safe_serialization=safe_serialization,
|
|
)
|
|
tokenizer.save_pretrained(str(Path(cfg.output_dir) / "merged"))
|
|
|
|
|
|
def shard(
|
|
*,
|
|
cfg: DictDefault,
|
|
cli_args: TrainerCliArgs,
|
|
):
|
|
model, _ = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
|
|
safe_serialization = cfg.save_safetensors is True
|
|
LOG.debug("Re-saving model w/ sharding")
|
|
model.save_pretrained(cfg.output_dir, safe_serialization=safe_serialization)
|
|
|
|
|
|
def do_inference(
|
|
*,
|
|
cfg: DictDefault,
|
|
cli_args: TrainerCliArgs,
|
|
):
|
|
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
|
|
prompter = cli_args.prompter
|
|
default_tokens = {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
|
|
|
|
for token, symbol in default_tokens.items():
|
|
# If the token isn't already specified in the config, add it
|
|
if not (cfg.special_tokens and token in cfg.special_tokens):
|
|
tokenizer.add_special_tokens({token: symbol})
|
|
|
|
prompter_module = None
|
|
if prompter:
|
|
prompter_module = getattr(
|
|
importlib.import_module("axolotl.prompters"), prompter
|
|
)
|
|
|
|
if cfg.landmark_attention:
|
|
from axolotl.monkeypatch.llama_landmark_attn import set_model_mem_id
|
|
|
|
set_model_mem_id(model, tokenizer)
|
|
model.set_mem_cache_args(
|
|
max_seq_len=255, mem_freq=50, top_k=5, max_cache_size=None
|
|
)
|
|
|
|
model = model.to(cfg.device)
|
|
|
|
while True:
|
|
print("=" * 80)
|
|
# support for multiline inputs
|
|
instruction = get_multi_line_input()
|
|
if not instruction:
|
|
return
|
|
if prompter_module:
|
|
prompt: str = next(
|
|
prompter_module().build_prompt(instruction=instruction.strip("\n"))
|
|
)
|
|
else:
|
|
prompt = instruction.strip()
|
|
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
|
|
|
|
print("=" * 40)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
generation_config = GenerationConfig(
|
|
repetition_penalty=1.1,
|
|
max_new_tokens=1024,
|
|
temperature=0.9,
|
|
top_p=0.95,
|
|
top_k=40,
|
|
bos_token_id=tokenizer.bos_token_id,
|
|
eos_token_id=tokenizer.eos_token_id,
|
|
pad_token_id=tokenizer.pad_token_id,
|
|
do_sample=True,
|
|
use_cache=True,
|
|
return_dict_in_generate=True,
|
|
output_attentions=False,
|
|
output_hidden_states=False,
|
|
output_scores=False,
|
|
)
|
|
streamer = TextStreamer(tokenizer)
|
|
generated = model.generate(
|
|
inputs=batch["input_ids"].to(cfg.device),
|
|
generation_config=generation_config,
|
|
streamer=streamer,
|
|
)
|
|
print("=" * 40)
|
|
print(tokenizer.decode(generated["sequences"].cpu().tolist()[0]))
|
|
|
|
|
|
def choose_config(path: Path):
|
|
yaml_files = list(path.glob("*.yml"))
|
|
|
|
if not yaml_files:
|
|
raise ValueError(
|
|
"No YAML config files found in the specified directory. Are you using a .yml extension?"
|
|
)
|
|
|
|
if len(yaml_files) == 1:
|
|
print(f"Using default YAML file '{yaml_files[0]}'")
|
|
return yaml_files[0]
|
|
|
|
print("Choose a YAML file:")
|
|
for idx, file in enumerate(yaml_files):
|
|
print(f"{idx + 1}. {file}")
|
|
|
|
chosen_file = None
|
|
while chosen_file is None:
|
|
try:
|
|
choice = int(input("Enter the number of your choice: "))
|
|
if 1 <= choice <= len(yaml_files):
|
|
chosen_file = yaml_files[choice - 1]
|
|
else:
|
|
print("Invalid choice. Please choose a number from the list.")
|
|
except ValueError:
|
|
print("Invalid input. Please enter a number.")
|
|
|
|
return chosen_file
|
|
|
|
|
|
def check_not_in(list1: List[str], list2: Union[Dict[str, Any], List[str]]) -> bool:
|
|
return not any(el in list2 for el in list1)
|
|
|
|
|
|
def load_cfg(config: Path = Path("examples/"), **kwargs):
|
|
if Path(config).is_dir():
|
|
config = choose_config(config)
|
|
|
|
# load the config from the yaml file
|
|
with open(config, encoding="utf-8") as file:
|
|
cfg: DictDefault = DictDefault(yaml.safe_load(file))
|
|
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
|
|
# then overwrite the value
|
|
cfg_keys = cfg.keys()
|
|
for k, _ in kwargs.items():
|
|
# if not strict, allow writing to cfg even if it's not in the yml already
|
|
if k in cfg_keys or not cfg.strict:
|
|
# handle booleans
|
|
if isinstance(cfg[k], bool):
|
|
cfg[k] = bool(kwargs[k])
|
|
else:
|
|
cfg[k] = kwargs[k]
|
|
|
|
validate_config(cfg)
|
|
|
|
normalize_config(cfg)
|
|
|
|
setup_wandb_env_vars(cfg)
|
|
return cfg
|
|
|
|
|
|
def load_datasets(
|
|
*,
|
|
cfg: DictDefault,
|
|
cli_args: TrainerCliArgs,
|
|
) -> TrainDatasetMeta:
|
|
tokenizer = load_tokenizer(cfg)
|
|
|
|
train_dataset, eval_dataset, total_num_steps = prepare_dataset(cfg, tokenizer)
|
|
|
|
if cli_args.debug or cfg.debug:
|
|
LOG.info("check_dataset_labels...")
|
|
check_dataset_labels(
|
|
train_dataset.select(
|
|
[
|
|
random.randrange(0, len(train_dataset) - 1) # nosec
|
|
for _ in range(cli_args.debug_num_examples)
|
|
]
|
|
),
|
|
tokenizer,
|
|
num_examples=cli_args.debug_num_examples,
|
|
text_only=cli_args.debug_text_only,
|
|
)
|
|
|
|
return TrainDatasetMeta(
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
total_num_steps=total_num_steps,
|
|
)
|
|
|
|
|
|
def do_cli(config: Path = Path("examples/"), **kwargs):
|
|
print_axolotl_text_art()
|
|
parsed_cfg = load_cfg(config, **kwargs)
|
|
parser = transformers.HfArgumentParser((TrainerCliArgs))
|
|
parsed_cli_args, _ = parser.parse_args_into_dataclasses(
|
|
return_remaining_strings=True
|
|
)
|
|
if parsed_cli_args.inference:
|
|
do_inference(cfg=parsed_cfg, cli_args=parsed_cli_args)
|
|
elif parsed_cli_args.merge_lora:
|
|
do_merge_lora(cfg=parsed_cfg, cli_args=parsed_cli_args)
|
|
elif parsed_cli_args.shard:
|
|
shard(cfg=parsed_cfg, cli_args=parsed_cli_args)
|
|
else:
|
|
dataset_meta = load_datasets(cfg=parsed_cfg, cli_args=parsed_cli_args)
|
|
if parsed_cli_args.prepare_ds_only:
|
|
return
|
|
train(cfg=parsed_cfg, cli_args=parsed_cli_args, dataset_meta=dataset_meta)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(do_cli)
|