109 lines
4.8 KiB
Python
109 lines
4.8 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import pytest
|
|
import os
|
|
import tempfile
|
|
from unittest import TestCase
|
|
import shutil
|
|
|
|
from bigdl.llm import llm_convert
|
|
from bigdl.llm.transformers import AutoModelForCausalLM
|
|
from bigdl.llm.optimize import optimize_model, load_low_bit, low_memory_init
|
|
|
|
|
|
llama_model_path = os.environ.get('LLAMA_ORIGIN_PATH')
|
|
gptneox_model_path = os.environ.get('GPTNEOX_ORIGIN_PATH')
|
|
bloom_model_path = os.environ.get('BLOOM_ORIGIN_PATH')
|
|
starcoder_model_path = os.environ.get('STARCODER_ORIGIN_PATH')
|
|
output_dir = os.environ.get('INT4_CKPT_DIR')
|
|
|
|
class TestConvertModel(TestCase):
|
|
|
|
def test_convert_llama(self):
|
|
converted_model_path = llm_convert(model=llama_model_path,
|
|
outfile=output_dir,
|
|
model_family='llama',
|
|
model_format="pth",
|
|
outtype='int4')
|
|
assert os.path.isfile(converted_model_path)
|
|
|
|
def test_convert_gptneox(self):
|
|
converted_model_path = llm_convert(model=gptneox_model_path,
|
|
outfile=output_dir,
|
|
model_family='gptneox',
|
|
model_format="pth",
|
|
outtype='int4')
|
|
assert os.path.isfile(converted_model_path)
|
|
|
|
def test_convert_bloom(self):
|
|
converted_model_path = llm_convert(model=bloom_model_path,
|
|
outfile=output_dir,
|
|
model_family='bloom',
|
|
model_format="pth",
|
|
outtype='int4')
|
|
assert os.path.isfile(converted_model_path)
|
|
|
|
def test_convert_starcoder(self):
|
|
converted_model_path = llm_convert(model=starcoder_model_path,
|
|
outfile=output_dir,
|
|
model_family='starcoder',
|
|
model_format="pth",
|
|
outtype='int4')
|
|
assert os.path.isfile(converted_model_path)
|
|
|
|
def test_transformer_convert_llama(self):
|
|
with tempfile.TemporaryDirectory(dir=output_dir) as tempdir:
|
|
model = AutoModelForCausalLM.from_pretrained(llama_model_path, load_in_4bit=True)
|
|
model.save_low_bit(tempdir)
|
|
newModel = AutoModelForCausalLM.load_low_bit(tempdir)
|
|
assert newModel is not None
|
|
|
|
def test_transformer_convert_llama_q5(self):
|
|
model = AutoModelForCausalLM.from_pretrained(llama_model_path,
|
|
load_in_low_bit="sym_int5")
|
|
|
|
def test_transformer_convert_llama_q8(self):
|
|
model = AutoModelForCausalLM.from_pretrained(llama_model_path,
|
|
load_in_low_bit="sym_int8")
|
|
|
|
def test_transformer_convert_llama_save_load(self):
|
|
with tempfile.TemporaryDirectory(dir=output_dir) as tempdir:
|
|
model = AutoModelForCausalLM.from_pretrained(llama_model_path,
|
|
load_in_low_bit="asym_int4")
|
|
model.save_low_bit(tempdir)
|
|
newModel = AutoModelForCausalLM.load_low_bit(tempdir)
|
|
assert newModel is not None
|
|
|
|
def test_optimize_transformers_llama(self):
|
|
from transformers import AutoModelForCausalLM as AutoCLM
|
|
with tempfile.TemporaryDirectory(dir=output_dir) as tempdir:
|
|
model = AutoCLM.from_pretrained(llama_model_path,
|
|
torch_dtype="auto",
|
|
low_cpu_mem_usage=True,
|
|
trust_remote_code=True)
|
|
model = optimize_model(model)
|
|
model.save_low_bit(tempdir)
|
|
with low_memory_init():
|
|
new_model = AutoCLM.from_pretrained(tempdir,
|
|
torch_dtype="auto",
|
|
trust_remote_code=True)
|
|
new_model = load_low_bit(new_model,
|
|
model_path=tempdir)
|
|
assert new_model is not None
|
|
|
|
if __name__ == '__main__':
|
|
pytest.main([__file__])
|