* enabling xetla only supports qtype=SYM_INT4 or FP8E5 * LISA Finetuning Example on gpu * update readme * add licence * Explain parameters of lisa & Move backend codes to src dir * fix style * fix style * update readme * support chatglm * fix style * fix style * update readme * fix
81 lines
3.2 KiB
Python
81 lines
3.2 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from transformers import TrainerCallback
|
|
import numpy as np
|
|
from ipex_llm.utils.common import invalidInputError
|
|
|
|
|
|
# source: https://github.com/OptimalScale/LMFlow/blob/main/src/lmflow/pipeline/finetuner.py
|
|
class DynamicLayerActivationCallback(TrainerCallback):
|
|
def __init__(self, n_layers, interval_steps, model):
|
|
super().__init__()
|
|
self.n_layers = n_layers
|
|
self.interval_steps = interval_steps
|
|
self.model = model
|
|
|
|
# Determine the way to access layers based on the model type
|
|
class_to_layers_map = {
|
|
'LlamaForCausalLM': 'model.model.layers',
|
|
'Qwen2ForCausalLM': 'model.model.layers',
|
|
'MistralForCausalLM': 'model.model.layers',
|
|
'MixtralForCausalLM': 'model.model.layers',
|
|
'GemmaForCausalLM': 'model.model.layers',
|
|
'GPT2LMHeadModel': 'model.transformer.h',
|
|
'ChatGLMModel': 'model.transformer.encoder.layers',
|
|
}
|
|
model_class_name = self.model.__class__.__name__
|
|
if model_class_name in class_to_layers_map:
|
|
self.layers_attribute = class_to_layers_map[model_class_name]
|
|
else:
|
|
# self.layers_attribute = training_args.lisa_layers_attribute
|
|
invalidInputError(False, f"Model {model_class_name} not supported.")
|
|
# Dynamically execute to get the number of layers
|
|
self.total_layers = len(eval('self.' + self.layers_attribute))
|
|
|
|
self.active_layers_indices = []
|
|
|
|
def freeze_all_layers(self):
|
|
layers = eval('self.' + self.layers_attribute) # Dynamically execute to get layers
|
|
for layer in layers:
|
|
for param in layer.parameters():
|
|
param.requires_grad = False
|
|
|
|
def on_step_begin(self, args, state, control, **kwargs):
|
|
# Check if it's time to switch active layers, including at step 0
|
|
if state.global_step % self.interval_steps == 0:
|
|
self.switch_active_layers()
|
|
|
|
def switch_active_layers(self):
|
|
# First, disable gradients for all layers
|
|
self.freeze_all_layers()
|
|
|
|
# Randomly select n_layers to activate
|
|
layers = eval('self.' + self.layers_attribute) # Re-fetch layer references
|
|
self.active_layers_indices = np.random.choice(
|
|
range(self.total_layers),
|
|
self.n_layers,
|
|
replace=False
|
|
)
|
|
print(
|
|
f"Activating layers at indices: {self.active_layers_indices} for the next steps.",
|
|
flush=True
|
|
)
|
|
|
|
# Enable gradients only for the selected layers
|
|
for idx in self.active_layers_indices:
|
|
for param in layers[idx].parameters():
|
|
param.requires_grad = True
|