77 lines
2.9 KiB
Python
77 lines
2.9 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import argparse
|
|
import os
|
|
|
|
import requests
|
|
import time
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
|
|
|
from ipex_llm import optimize_model
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama3.2-Vision model')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
|
help='The huggingface repo id for the Llama3.2-Vision model to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument('--image-url-or-path', type=str,
|
|
default='https://hf-mirror.com/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg',
|
|
help='The URL or path to the image to infer')
|
|
parser.add_argument('--prompt', type=str, default="Describe image in detail",
|
|
help='Prompt to infer')
|
|
parser.add_argument('--n-predict', type=int, default=32,
|
|
help='Max tokens to predict')
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
image_path = args.image_url_or_path
|
|
prompt = args.prompt
|
|
|
|
model = MllamaForConditionalGeneration.from_pretrained(model_path)
|
|
model = optimize_model(model, modules_to_not_convert=["multi_modal_projector"])
|
|
model = model.half().eval()
|
|
model = model.to('xpu')
|
|
|
|
processor = AutoProcessor.from_pretrained(model_path)
|
|
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image"},
|
|
{"type": "text", "text": prompt}
|
|
]
|
|
}
|
|
]
|
|
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
|
|
|
if os.path.exists(image_path):
|
|
image = Image.open(image_path)
|
|
else:
|
|
image = Image.open(requests.get(image_path, stream=True).raw)
|
|
|
|
inputs = processor(text=text, images=image, return_tensors="pt").to(model.device)
|
|
|
|
with torch.inference_mode():
|
|
for i in range(3):
|
|
st = time.time()
|
|
output = model.generate(**inputs, do_sample=False, max_new_tokens=args.n_predict)
|
|
et = time.time()
|
|
print(et - st)
|
|
print(processor.decode(output[0]))
|