76 lines
3.5 KiB
Python
76 lines
3.5 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import argparse
|
|
import os
|
|
|
|
import torch
|
|
import time
|
|
from transformers import AutoTokenizer
|
|
from ipex_llm.transformers import AutoModelForCausalLM, init_pipeline_parallel
|
|
|
|
init_pipeline_parallel()
|
|
torch.manual_seed(1234)
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for large vision language model')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-VL-Chat",
|
|
help='The huggingface repo id for the Qwen-VL-Chat model to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument('--image-url-or-path', type=str,
|
|
default="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg",
|
|
help='The URL or path to the image to infer')
|
|
parser.add_argument('--prompt', type=str, default="这是什么?",
|
|
help='Prompt to infer')
|
|
parser.add_argument('--n-predict', type=int, default=32,
|
|
help='Max tokens to predict')
|
|
parser.add_argument('--low-bit', type=str, default='sym_int4', help='The quantization type the model will convert to.')
|
|
parser.add_argument('--gpu-num', type=int, default=2, help='GPU number to use')
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
image_path = args.image_url_or_path
|
|
|
|
# Load model
|
|
# For successful IPEX-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization
|
|
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
|
|
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
|
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
load_in_low_bit=args.low_bit,
|
|
optimize_model=True,
|
|
trust_remote_code=True,
|
|
use_cache=True,
|
|
torch_dtype=torch.float32,
|
|
modules_to_not_convert=['c_fc', 'out_proj'],
|
|
pipeline_parallel_stages=args.gpu_num)
|
|
|
|
# Load tokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
local_rank = torch.distributed.get_rank()
|
|
|
|
all_input = [{'image': args.image_url_or_path}, {'text': args.prompt}]
|
|
input_list = [_input for _input in all_input if list(_input.values())[0] != '']
|
|
query = tokenizer.from_list_format(input_list)
|
|
|
|
with torch.inference_mode():
|
|
response, _ = model.chat(tokenizer, query=query, history=[])
|
|
torch.xpu.synchronize()
|
|
|
|
if local_rank == args.gpu_num - 1:
|
|
print('-'*20, 'Input', '-'*20)
|
|
print(f'Message: {all_input}')
|
|
print('-'*20, 'Output', '-'*20)
|
|
print(response)
|