* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
338 lines
11 KiB
Python
338 lines
11 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import os
|
|
import argparse
|
|
import pandas as pd
|
|
import torch
|
|
import json
|
|
from tqdm import tqdm
|
|
|
|
from ipex_llm.utils.common.log4Error import invalidInputError
|
|
from evaluators.qwen import QwenEvaluator
|
|
from evaluators.llama import LlamaEvaluator
|
|
from evaluators.chatglm import ChatGLMEvaluator
|
|
|
|
|
|
TASK_NAME_MAPPING = {
|
|
"computer_network": ["Computer Network", "\u8ba1\u7b97\u673a\u7f51\u7edc", "STEM"],
|
|
"operating_system": ["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"],
|
|
"computer_architecture": [
|
|
"Computer Architecture",
|
|
"\u8ba1\u7b97\u673a\u7ec4\u6210",
|
|
"STEM",
|
|
],
|
|
"college_programming": ["College Programming", "\u5927\u5b66\u7f16\u7a0b", "STEM"],
|
|
"college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"],
|
|
"college_chemistry": ["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"],
|
|
"advanced_mathematics": [
|
|
"Advanced Mathematics",
|
|
"\u9ad8\u7b49\u6570\u5b66",
|
|
"STEM",
|
|
],
|
|
"probability_and_statistics": [
|
|
"Probability and Statistics",
|
|
"\u6982\u7387\u7edf\u8ba1",
|
|
"STEM",
|
|
],
|
|
"discrete_mathematics": [
|
|
"Discrete Mathematics",
|
|
"\u79bb\u6563\u6570\u5b66",
|
|
"STEM",
|
|
],
|
|
"electrical_engineer": [
|
|
"Electrical Engineer",
|
|
"\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08",
|
|
"STEM",
|
|
],
|
|
"metrology_engineer": [
|
|
"Metrology Engineer",
|
|
"\u6ce8\u518c\u8ba1\u91cf\u5e08",
|
|
"STEM",
|
|
],
|
|
"high_school_mathematics": [
|
|
"High School Mathematics",
|
|
"\u9ad8\u4e2d\u6570\u5b66",
|
|
"STEM",
|
|
],
|
|
"high_school_physics": ["High School Physics", "\u9ad8\u4e2d\u7269\u7406", "STEM"],
|
|
"high_school_chemistry": [
|
|
"High School Chemistry",
|
|
"\u9ad8\u4e2d\u5316\u5b66",
|
|
"STEM",
|
|
],
|
|
"high_school_biology": ["High School Biology", "\u9ad8\u4e2d\u751f\u7269", "STEM"],
|
|
"middle_school_mathematics": [
|
|
"Middle School Mathematics",
|
|
"\u521d\u4e2d\u6570\u5b66",
|
|
"STEM",
|
|
],
|
|
"middle_school_biology": [
|
|
"Middle School Biology",
|
|
"\u521d\u4e2d\u751f\u7269",
|
|
"STEM",
|
|
],
|
|
"middle_school_physics": [
|
|
"Middle School Physics",
|
|
"\u521d\u4e2d\u7269\u7406",
|
|
"STEM",
|
|
],
|
|
"middle_school_chemistry": [
|
|
"Middle School Chemistry",
|
|
"\u521d\u4e2d\u5316\u5b66",
|
|
"STEM",
|
|
],
|
|
"veterinary_medicine": ["Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"],
|
|
"college_economics": [
|
|
"College Economics",
|
|
"\u5927\u5b66\u7ecf\u6d4e\u5b66",
|
|
"Social Science",
|
|
],
|
|
"business_administration": [
|
|
"Business Administration",
|
|
"\u5de5\u5546\u7ba1\u7406",
|
|
"Social Science",
|
|
],
|
|
"marxism": [
|
|
"Marxism",
|
|
"\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406",
|
|
"Social Science",
|
|
],
|
|
"mao_zedong_thought": [
|
|
"Mao Zedong Thought",
|
|
"\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba",
|
|
"Social Science",
|
|
],
|
|
"education_science": ["Education Science", "\u6559\u80b2\u5b66", "Social Science"],
|
|
"teacher_qualification": [
|
|
"Teacher Qualification",
|
|
"\u6559\u5e08\u8d44\u683c",
|
|
"Social Science",
|
|
],
|
|
"high_school_politics": [
|
|
"High School Politics",
|
|
"\u9ad8\u4e2d\u653f\u6cbb",
|
|
"Social Science",
|
|
],
|
|
"high_school_geography": [
|
|
"High School Geography",
|
|
"\u9ad8\u4e2d\u5730\u7406",
|
|
"Social Science",
|
|
],
|
|
"middle_school_politics": [
|
|
"Middle School Politics",
|
|
"\u521d\u4e2d\u653f\u6cbb",
|
|
"Social Science",
|
|
],
|
|
"middle_school_geography": [
|
|
"Middle School Geography",
|
|
"\u521d\u4e2d\u5730\u7406",
|
|
"Social Science",
|
|
],
|
|
"modern_chinese_history": [
|
|
"Modern Chinese History",
|
|
"\u8fd1\u4ee3\u53f2\u7eb2\u8981",
|
|
"Humanities",
|
|
],
|
|
"ideological_and_moral_cultivation": [
|
|
"Ideological and Moral Cultivation",
|
|
"\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840",
|
|
"Humanities",
|
|
],
|
|
"logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"],
|
|
"law": ["Law", "\u6cd5\u5b66", "Humanities"],
|
|
"chinese_language_and_literature": [
|
|
"Chinese Language and Literature",
|
|
"\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66",
|
|
"Humanities",
|
|
],
|
|
"art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"],
|
|
"professional_tour_guide": [
|
|
"Professional Tour Guide",
|
|
"\u5bfc\u6e38\u8d44\u683c",
|
|
"Humanities",
|
|
],
|
|
"legal_professional": [
|
|
"Legal Professional",
|
|
"\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c",
|
|
"Humanities",
|
|
],
|
|
"high_school_chinese": [
|
|
"High School Chinese",
|
|
"\u9ad8\u4e2d\u8bed\u6587",
|
|
"Humanities",
|
|
],
|
|
"high_school_history": [
|
|
"High School History",
|
|
"\u9ad8\u4e2d\u5386\u53f2",
|
|
"Humanities",
|
|
],
|
|
"middle_school_history": [
|
|
"Middle School History",
|
|
"\u521d\u4e2d\u5386\u53f2",
|
|
"Humanities",
|
|
],
|
|
"civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"],
|
|
"sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"],
|
|
"plant_protection": ["Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"],
|
|
"basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"],
|
|
"clinical_medicine": ["Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"],
|
|
"urban_and_rural_planner": [
|
|
"Urban and Rural Planner",
|
|
"\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08",
|
|
"Other",
|
|
],
|
|
"accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"],
|
|
"fire_engineer": [
|
|
"Fire Engineer",
|
|
"\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08",
|
|
"Other",
|
|
],
|
|
"environmental_impact_assessment_engineer": [
|
|
"Environmental Impact Assessment Engineer",
|
|
"\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08",
|
|
"Other",
|
|
],
|
|
"tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"],
|
|
"physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"],
|
|
}
|
|
hard_list = [
|
|
"advanced_mathematics",
|
|
"discrete_mathematics",
|
|
"probability_and_statistics",
|
|
"college_physics",
|
|
"college_chemistry",
|
|
"high_school_mathematics",
|
|
"high_school_physics",
|
|
"high_school_chemistry",
|
|
]
|
|
choices = ["A", "B", "C", "D"]
|
|
|
|
|
|
def cal_ceval(res, model_path, qtype):
|
|
acc_sum_dict = dict()
|
|
acc_norm_sum_dict = dict()
|
|
cnt_dict = dict()
|
|
acc_sum = 0.0
|
|
cnt = 0
|
|
hard_cnt = 0
|
|
hard_acc_sum = 0.0
|
|
for tt in res.keys():
|
|
name = tt.split("-")[-1]
|
|
acc_sum += float(res[tt])
|
|
cnt += 1
|
|
class_ = TASK_NAME_MAPPING[name][2]
|
|
if class_ not in acc_sum_dict:
|
|
acc_sum_dict[class_] = 0.0
|
|
acc_norm_sum_dict[class_] = 0.0
|
|
cnt_dict[class_] = 0.0
|
|
if name in hard_list:
|
|
hard_cnt += 1
|
|
hard_acc_sum += float(res[tt])
|
|
acc_sum_dict[class_] += float(res[tt])
|
|
cnt_dict[class_] += 1
|
|
|
|
result_lst = []
|
|
subject_names = ["STEM", "Social Science", "Humanities", "Other", "Hard", "Average"]
|
|
for value in subject_names:
|
|
if value == "Hard":
|
|
result_lst.append(f"{hard_acc_sum / hard_cnt:.2f}")
|
|
elif value == "Average":
|
|
result_lst.append(f"{acc_sum / cnt:.2f}")
|
|
else:
|
|
result_lst.append(f"{acc_sum_dict[value] / cnt_dict[value]:.2f}")
|
|
|
|
if not os.path.exists('results/'):
|
|
os.mkdir('results/')
|
|
|
|
dump_dict = {"Model Name": model_path.split('/')[-2], "Precision": qtype, "Results": result_lst}
|
|
json.dump(dump_dict, open(f'results/{dump_dict["Model Name"]}_{dump_dict["Precision"]}.json','w'), ensure_ascii=False, indent=4)
|
|
|
|
|
|
def main(args, evaluator):
|
|
if args.eval_type == "validation":
|
|
result = {}
|
|
for subject_name in tqdm(TASK_NAME_MAPPING.keys()):
|
|
val_file_path = os.path.join(
|
|
args.eval_data_path, "val", f"{subject_name}_val.csv"
|
|
)
|
|
val_df = pd.read_csv(val_file_path)
|
|
score, _ = evaluator.eval_subject(subject_name, val_df, args.eval_type)
|
|
torch.xpu.empty_cache()
|
|
result[subject_name] = score
|
|
cal_ceval(result, args.model_path, args.qtype)
|
|
elif args.eval_type == "test":
|
|
all_answers = {}
|
|
for subject_name in tqdm(TASK_NAME_MAPPING.keys()):
|
|
test_file_path = os.path.join(
|
|
args.eval_data_path, "test", f"{subject_name}_test.csv"
|
|
)
|
|
test_df = pd.read_csv(test_file_path)
|
|
_, answers = evaluator.eval_subject(subject_name, test_df, args.eval_type)
|
|
torch.xpu.empty_cache()
|
|
all_answers[subject_name] = answers
|
|
json.dump(all_answers, open('submission.json','w'), ensure_ascii=False, indent=4)
|
|
else:
|
|
invalidInputError(False,
|
|
"Invalid eval_type, please use validation or test.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--model_path", type=str, default="meta-llama/Llama-2-7b-chat-hf")
|
|
parser.add_argument("--eval_type", type=str, default="validation")
|
|
parser.add_argument("--device", type=str, default="xpu")
|
|
parser.add_argument("--eval_data_path", type=str, default="data")
|
|
parser.add_argument("--qtype", type=str, default="sym_int4")
|
|
|
|
args = parser.parse_args()
|
|
|
|
# decide the model family
|
|
model_families = ['llama', 'qwen', 'chatglm']
|
|
|
|
model_family = None
|
|
for family in model_families:
|
|
if family in args.model_path.lower():
|
|
model_family = family
|
|
|
|
assert model_family is not None, f"Model {args.model_path}'s evaluator is not implemented"
|
|
|
|
if model_family == "llama":
|
|
evaluator = LlamaEvaluator(
|
|
choices=choices,
|
|
model_path=args.model_path,
|
|
device=args.device,
|
|
qtype=args.qtype
|
|
)
|
|
elif model_family == "qwen":
|
|
evaluator = QwenEvaluator(
|
|
choices=choices,
|
|
model_path=args.model_path,
|
|
device=args.device,
|
|
qtype=args.qtype
|
|
)
|
|
elif model_family == "chatglm":
|
|
evaluator = ChatGLMEvaluator(
|
|
choices=choices,
|
|
model_path=args.model_path,
|
|
device=args.device,
|
|
qtype=args.qtype
|
|
)
|
|
else:
|
|
invalidInputError(
|
|
False,
|
|
"Invalid model_family, currently support llama, qwen, and chatglm only.")
|
|
main(args, evaluator=evaluator)
|