* qwen2-vl readme * add qwen2-vl example * fix * fix * fix * add link * Update regarding modules_to_not_convert and readme * Further fix * Small fix --------- Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
		
			
				
	
	
		
			116 lines
		
	
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			116 lines
		
	
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
import numpy as np
 | 
						|
 | 
						|
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
 | 
						|
from qwen_vl_utils import process_vision_info
 | 
						|
from ipex_llm import optimize_model
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2-VL-7B-Instruct model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-VL-7B-Instruct",
 | 
						|
                        help='The huggingface repo id for the Qwen2-VL model to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--prompt', type=str, default="Describe this image.",
 | 
						|
                        help='Prompt to infer') 
 | 
						|
    parser.add_argument('--image-url-or-path', type=str,
 | 
						|
                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg' ,
 | 
						|
                        help='The URL or path to the image to infer')
 | 
						|
    
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    model = Qwen2VLForConditionalGeneration.from_pretrained(model_path,
 | 
						|
                                                 trust_remote_code=True,
 | 
						|
                                                 torch_dtype='auto',
 | 
						|
                                                 low_cpu_mem_usage=True,
 | 
						|
                                                 use_cache=True,)
 | 
						|
 | 
						|
    model = optimize_model(model, low_bit='sym_int4', modules_to_not_convert=["visual"])
 | 
						|
 | 
						|
    # Use .float() for better output, and use .half() for better speed
 | 
						|
    model = model.half().to("xpu")
 | 
						|
 | 
						|
    # The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct#quickstart
 | 
						|
 | 
						|
    # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
 | 
						|
    min_pixels = 256*28*28
 | 
						|
    max_pixels = 1280*28*28
 | 
						|
    processor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels)
 | 
						|
 | 
						|
    prompt = args.prompt
 | 
						|
    image_path = args.image_url_or_path
 | 
						|
 | 
						|
    messages = [
 | 
						|
        {
 | 
						|
            "role": "user",
 | 
						|
            "content": [
 | 
						|
                {
 | 
						|
                    "type": "image",
 | 
						|
                    "image": image_path,
 | 
						|
                },
 | 
						|
                {"type": "text", "text": prompt},
 | 
						|
            ],
 | 
						|
        }
 | 
						|
    ]
 | 
						|
    text = processor.apply_chat_template(
 | 
						|
        messages, tokenize=False, add_generation_prompt=True
 | 
						|
    )
 | 
						|
    image_inputs, video_inputs = process_vision_info(messages)
 | 
						|
    inputs = processor(
 | 
						|
        text=[text],
 | 
						|
        images=image_inputs,
 | 
						|
        videos=video_inputs,
 | 
						|
        padding=True,
 | 
						|
        return_tensors="pt",
 | 
						|
    )
 | 
						|
    inputs = inputs.to('xpu')
 | 
						|
 | 
						|
    with torch.inference_mode():
 | 
						|
        # warmup
 | 
						|
        generated_ids = model.generate(
 | 
						|
            **inputs,
 | 
						|
            max_new_tokens=args.n_predict
 | 
						|
            )
 | 
						|
 | 
						|
        st = time.time()
 | 
						|
        generated_ids = model.generate(
 | 
						|
            **inputs,
 | 
						|
            max_new_tokens=args.n_predict
 | 
						|
            )
 | 
						|
        torch.xpu.synchronize()
 | 
						|
        end = time.time()
 | 
						|
        generated_ids = generated_ids.cpu()
 | 
						|
        generated_ids = [
 | 
						|
            output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
 | 
						|
            ]
 | 
						|
 | 
						|
        response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        print('-'*20, 'Input Image', '-'*20)
 | 
						|
        print(image_path)
 | 
						|
        print('-'*20, 'Prompt', '-'*20)
 | 
						|
        print(prompt)
 | 
						|
        print('-'*20, 'Output', '-'*20)
 | 
						|
        print(response)
 |