360 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			360 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
# Some parts of this file is adapted from
 | 
						|
# https://github.com/mit-han-lab/streaming-llm/blob/main/examples/run_streaming_llama.py
 | 
						|
# which is licensed under the MIT license:
 | 
						|
#
 | 
						|
# MIT License
 | 
						|
# 
 | 
						|
# Copyright (c) 2023 MIT HAN Lab
 | 
						|
# 
 | 
						|
# Permission is hereby granted, free of charge, to any person obtaining a copy
 | 
						|
# of this software and associated documentation files (the "Software"), to deal
 | 
						|
# in the Software without restriction, including without limitation the rights
 | 
						|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | 
						|
# copies of the Software, and to permit persons to whom the Software is
 | 
						|
# furnished to do so, subject to the following conditions:
 | 
						|
 | 
						|
# The above copyright notice and this permission notice shall be included in all
 | 
						|
# copies or substantial portions of the Software.
 | 
						|
 | 
						|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | 
						|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | 
						|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | 
						|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | 
						|
# SOFTWARE.
 | 
						|
 | 
						|
import torch
 | 
						|
import argparse
 | 
						|
import sys
 | 
						|
 | 
						|
# todo: support more model class
 | 
						|
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, AutoConfig
 | 
						|
from transformers import TextIteratorStreamer
 | 
						|
from transformers.tools.agents import StopSequenceCriteria
 | 
						|
from transformers.generation.stopping_criteria import StoppingCriteriaList
 | 
						|
 | 
						|
from colorama import Fore
 | 
						|
 | 
						|
from ipex_llm import optimize_model
 | 
						|
from kv_cache import StartRecentKVCache
 | 
						|
 | 
						|
HUMAN_ID = "<human>"
 | 
						|
BOT_ID = "<bot>"
 | 
						|
 | 
						|
def get_stop_words_ids(chat_format, tokenizer):
 | 
						|
    # https://github.com/QwenLM/Qwen/blob/main/examples/vllm_wrapper.py#L23
 | 
						|
    if chat_format == "Qwen":
 | 
						|
        stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id], [tokenizer.eod_id]]
 | 
						|
    # https://huggingface.co/01-ai/Yi-6B-Chat/blob/main/tokenizer_config.json#L38
 | 
						|
    elif chat_format == "Yi":
 | 
						|
        stop_words_ids = [tokenizer.encode("<|im_end|>")]
 | 
						|
    else:
 | 
						|
        raise NotImplementedError(f"Unknown chat format {chat_format!r}")
 | 
						|
    return stop_words_ids
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len, stop_words=[]):
 | 
						|
    print(Fore.BLUE+"IPEX-LLM: "+Fore.RESET, end="")
 | 
						|
    outputs = model(
 | 
						|
        input_ids=input_ids,
 | 
						|
        past_key_values=past_key_values,
 | 
						|
        use_cache=True,
 | 
						|
    )
 | 
						|
    past_key_values = outputs.past_key_values
 | 
						|
    pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
 | 
						|
    generated_ids = [pred_token_idx.item()]
 | 
						|
    pos = 0
 | 
						|
    stop = False
 | 
						|
    for _ in range(max_gen_len - 1):
 | 
						|
        outputs = model(
 | 
						|
            input_ids=pred_token_idx,
 | 
						|
            past_key_values=past_key_values,
 | 
						|
            use_cache=True,
 | 
						|
        )
 | 
						|
        past_key_values = outputs.past_key_values
 | 
						|
        pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
 | 
						|
        generated_ids.append(pred_token_idx.item())
 | 
						|
 | 
						|
        if stop_words is not None:
 | 
						|
            for stop_str in stop_words:
 | 
						|
                if generated_ids[-1 * len(stop_str):] == stop_str:
 | 
						|
                    stop = True
 | 
						|
                    break
 | 
						|
            if stop:
 | 
						|
                break
 | 
						|
        
 | 
						|
        generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True,
 | 
						|
                                          clean_up_tokenization_spaces=True,
 | 
						|
                                          spaces_between_special_tokens=False)
 | 
						|
 | 
						|
        now = len(generated_text) - 1
 | 
						|
        if now > pos:
 | 
						|
            if '\n<' in generated_text:
 | 
						|
                break
 | 
						|
            else:
 | 
						|
                print("".join(generated_text[pos:now]), end="", flush=True)
 | 
						|
                pos = now
 | 
						|
 | 
						|
        if pred_token_idx == tokenizer.eos_token_id:
 | 
						|
            break
 | 
						|
    if generated_text:
 | 
						|
        print(" ".join(generated_text[pos:]).strip('\n<'), flush=True)
 | 
						|
    return past_key_values
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
def stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]):
 | 
						|
    past_key_values = None
 | 
						|
    while True:
 | 
						|
        user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
 | 
						|
        # let's stop the conversation when user input "stop"
 | 
						|
        if user_input == "stop":
 | 
						|
            break
 | 
						|
        prompt = f"{HUMAN_ID} {user_input}\n{BOT_ID} "
 | 
						|
        input_ids = tokenizer(prompt, return_tensors="pt").input_ids
 | 
						|
        seq_len = input_ids.shape[1]
 | 
						|
        if kv_cache is not None:
 | 
						|
            space_needed = seq_len + max_gen_len
 | 
						|
            past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
 | 
						|
 | 
						|
        past_key_values = greedy_generate(
 | 
						|
            model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
 | 
						|
        )
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
def chatglm3_stream_chat(model, tokenizer):
 | 
						|
    chat_history = []
 | 
						|
    past_key_values = None
 | 
						|
    current_length = 0
 | 
						|
    # https://github.com/THUDM/ChatGLM3/issues/274#issuecomment-1810160305
 | 
						|
    stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(["<|user|>", "<|observation|>"], tokenizer)])
 | 
						|
    # you could change this according to your memory requirement
 | 
						|
    max_past_length = 512
 | 
						|
    block_length = 512
 | 
						|
 | 
						|
    while True:
 | 
						|
        user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
 | 
						|
        # let's stop the conversation when user input "stop"
 | 
						|
        if user_input == "stop":
 | 
						|
            break
 | 
						|
        print(Fore.BLUE+"IPEX-LLM: "+Fore.RESET, end="")
 | 
						|
        # https://github.com/THUDM/ChatGLM3/blob/main/PROMPT_en.md
 | 
						|
        prompt = f"""
 | 
						|
            <|system|>
 | 
						|
            You are an intelligent AI assistant, named ChatGLM3. Follow the user's instructions carefully.
 | 
						|
            <|user|>
 | 
						|
            {user_input}
 | 
						|
            <|assistant|>
 | 
						|
        """
 | 
						|
        if past_key_values is not None and past_key_values[0][0].shape[0] > max_past_length + block_length:
 | 
						|
            # To avoid out of memory, only keep recent key_values of max_past_length
 | 
						|
            past_key_values = [(k[-max_past_length:, :, :, :], v[-max_past_length:, :, :, :]) for k, v in past_key_values]
 | 
						|
        for response, chat_history, past_key_values in model.stream_chat(tokenizer, prompt,
 | 
						|
                                                                         history=chat_history,
 | 
						|
                                                                         stopping_criteria=stopping_criteria,
 | 
						|
                                                                         past_key_values=past_key_values,
 | 
						|
                                                                         return_past_key_values=True):
 | 
						|
            print(response[current_length:], end="", flush=True)
 | 
						|
            current_length = len(response)
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
def qwen_stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]):
 | 
						|
    past_key_values = None
 | 
						|
    while True:
 | 
						|
        user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
 | 
						|
        # let's stop the conversation when user input "stop"
 | 
						|
        if user_input == "stop":
 | 
						|
            break
 | 
						|
        # https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/generation_config.json#L2
 | 
						|
        prompt = f"""
 | 
						|
            <|im_start|>system
 | 
						|
            You are a helpful assistant.
 | 
						|
            <|im_end|>
 | 
						|
            <|im_start|>user
 | 
						|
            {user_input}
 | 
						|
            <|im_end|>
 | 
						|
            <|im_start|>assistant
 | 
						|
        """
 | 
						|
        input_ids = tokenizer(prompt, return_tensors="pt").input_ids
 | 
						|
        seq_len = input_ids.shape[1]
 | 
						|
        if kv_cache is not None:
 | 
						|
            space_needed = seq_len + max_gen_len
 | 
						|
            past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
 | 
						|
 | 
						|
        past_key_values = greedy_generate(
 | 
						|
            model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
 | 
						|
        )
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
def llama_stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]):
 | 
						|
    past_key_values = None
 | 
						|
    while True:
 | 
						|
        user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
 | 
						|
        # let's stop the conversation when user input "stop"
 | 
						|
        if user_input == "stop":
 | 
						|
            break
 | 
						|
        # https://huggingface.co/TheBloke/Llama-2-70B-Chat-GGML#prompt-template-llama-2-chat
 | 
						|
        prompt = f"""
 | 
						|
            [INST] <<SYS>>
 | 
						|
            You are a helpful assistant.
 | 
						|
            <</SYS>>
 | 
						|
            {user_input}[/INST]
 | 
						|
        """
 | 
						|
        input_ids = tokenizer(prompt, return_tensors="pt").input_ids
 | 
						|
        seq_len = input_ids.shape[1]
 | 
						|
        if kv_cache is not None:
 | 
						|
            space_needed = seq_len + max_gen_len
 | 
						|
            past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
 | 
						|
 | 
						|
        past_key_values = greedy_generate(
 | 
						|
            model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
 | 
						|
        )
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
def yi_stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]):
 | 
						|
    past_key_values = None
 | 
						|
    while True:
 | 
						|
        user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
 | 
						|
        # let's stop the conversation when user input "stop"
 | 
						|
        if user_input == "stop":
 | 
						|
            break
 | 
						|
        # https://huggingface.co/01-ai/Yi-6B-Chat#31-use-the-chat-model
 | 
						|
        prompt = f"""
 | 
						|
            <|im_start|>system
 | 
						|
            You are a helpful assistant. If you don't understand what the user means, ask the user to provide more information.
 | 
						|
            <|im_end|>
 | 
						|
            <|im_start|>user
 | 
						|
            {user_input}
 | 
						|
            <|im_end|>
 | 
						|
            <|im_start|>assistant
 | 
						|
        """
 | 
						|
        input_ids = tokenizer(prompt, return_tensors="pt").input_ids
 | 
						|
        seq_len = input_ids.shape[1]
 | 
						|
        if kv_cache is not None:
 | 
						|
            space_needed = seq_len + max_gen_len
 | 
						|
            past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
 | 
						|
 | 
						|
        past_key_values = greedy_generate(
 | 
						|
            model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
def format_prompt_with_history(input_str,
 | 
						|
                  chat_history):
 | 
						|
    SYSTEM_PROMPT = "A chat between a curious human <human> and an artificial intelligence assistant <bot>.\
 | 
						|
    The assistant gives helpful, detailed, and polite answers to the human's questions."
 | 
						|
    prompt = [f"{SYSTEM_PROMPT}\n"]
 | 
						|
    # prompt = []
 | 
						|
    for history_input_str, history_output_str in chat_history:
 | 
						|
        prompt.append(f"{HUMAN_ID} {history_input_str}\n{BOT_ID} {history_output_str}\n")
 | 
						|
    prompt.append(f"{HUMAN_ID} {input_str}\n{BOT_ID} ")
 | 
						|
 | 
						|
    return "".join(prompt)
 | 
						|
 | 
						|
 | 
						|
def stream_chat_with_history(model, tokenizer):
 | 
						|
    stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(HUMAN_ID, tokenizer)])
 | 
						|
 | 
						|
    chat_history = []
 | 
						|
 | 
						|
    while True:
 | 
						|
        with torch.inference_mode():
 | 
						|
            user_input = input(Fore.GREEN + "\nHuman: " + Fore.RESET)
 | 
						|
            if user_input == "stop":  # let's stop the conversation when user input "stop"
 | 
						|
                break
 | 
						|
            prompt = format_prompt_with_history(user_input, chat_history)
 | 
						|
            # print(prompt)
 | 
						|
            input_ids = tokenizer([prompt], return_tensors="pt")
 | 
						|
            streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
 | 
						|
            generate_kwargs = dict(input_ids, streamer=streamer, max_new_tokens=512,
 | 
						|
                                   stopping_criteria=stopping_criteria)
 | 
						|
 | 
						|
            from threading import Thread
 | 
						|
            # to ensure non-blocking access to the generated text, generation process should be ran in a separate thread
 | 
						|
            thread = Thread(target=model.generate, kwargs=generate_kwargs)
 | 
						|
            thread.start()
 | 
						|
 | 
						|
            output_str = []
 | 
						|
            print(Fore.BLUE + "IPEX-LLM: " + Fore.RESET, end="")
 | 
						|
            for partial_output_str in streamer:
 | 
						|
                output_str.append(partial_output_str)
 | 
						|
                # remove the last HUMAN_ID if exists
 | 
						|
                print(partial_output_str.replace(f"{HUMAN_ID}", ""), end="")
 | 
						|
 | 
						|
            chat_history.append((user_input, "".join(output_str).replace(f"{HUMAN_ID}", "").rstrip()))
 | 
						|
 | 
						|
def auto_select_model(model_name):
 | 
						|
    try:
 | 
						|
        try:
 | 
						|
            model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						|
                                                        low_cpu_mem_usage=True,
 | 
						|
                                                        torch_dtype="auto",
 | 
						|
                                                        trust_remote_code=True,
 | 
						|
                                                        use_cache=True)
 | 
						|
        except:
 | 
						|
            model = AutoModel.from_pretrained(model_path,
 | 
						|
                                             low_cpu_mem_usage=True,
 | 
						|
                                             torch_dtype="auto",
 | 
						|
                                             trust_remote_code=True,
 | 
						|
                                             use_cache=True)
 | 
						|
    except:
 | 
						|
        print("Sorry, the model you entered is not supported in installer.")
 | 
						|
        sys.exit()
 | 
						|
    
 | 
						|
    return model
 | 
						|
  
 | 
						|
if __name__ == "__main__":
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument("--model-path", type=str, help="path to an llm")
 | 
						|
    parser.add_argument("--start-size", type=int, default=4, help="start_size of kv_cahce")
 | 
						|
    parser.add_argument("--recent-size", type=int, default=2000)
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    model_path = args.model_path
 | 
						|
    start_size = args.start_size
 | 
						|
    recent_size = args.recent_size
 | 
						|
 | 
						|
    model = auto_select_model(model_path)
 | 
						|
    model = optimize_model(model)
 | 
						|
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
    if model.config.architectures is not None and model.config.architectures[0] == "QWenLMHeadModel":
 | 
						|
        stop_words = get_stop_words_ids("Qwen", tokenizer=tokenizer)
 | 
						|
        kv_cache = StartRecentKVCache(start_size=start_size,
 | 
						|
                                      k_seq_dim=1,
 | 
						|
                                      v_seq_dim=1,
 | 
						|
                                      recent_size=recent_size)
 | 
						|
        qwen_stream_chat(model=model, tokenizer=tokenizer,kv_cache=kv_cache, stop_words=stop_words)
 | 
						|
    elif model.config.architectures is not None and model.config.architectures[0] == "ChatGLMModel":
 | 
						|
        chatglm3_stream_chat(model=model, tokenizer=tokenizer)
 | 
						|
    elif model.config.architectures is not None and model.config.architectures[0] == "LlamaForCausalLM":
 | 
						|
        kv_cache = StartRecentKVCache(start_size=start_size, recent_size=recent_size)
 | 
						|
        if "yi" in model_path.lower():
 | 
						|
            stop_words = get_stop_words_ids("Yi", tokenizer=tokenizer)
 | 
						|
            yi_stream_chat(model=model, tokenizer=tokenizer, kv_cache=kv_cache, stop_words=stop_words)
 | 
						|
        else:
 | 
						|
            llama_stream_chat(model=model, tokenizer=tokenizer, kv_cache=kv_cache)
 | 
						|
    elif model.config.architectures[0] == "BaichuanForCausalLM" and model.config.vocab_size == 64000:
 | 
						|
        # Baichuan-13B-Chat
 | 
						|
        stream_chat_with_history(model=model, tokenizer=tokenizer)
 | 
						|
    else:
 | 
						|
        kv_cache = StartRecentKVCache(start_size=start_size, recent_size=recent_size)
 | 
						|
        stream_chat(model=model,
 | 
						|
                    tokenizer=tokenizer,
 | 
						|
                    kv_cache=kv_cache)
 |