ipex-llm/python/llm/example/NPU/HF-Transformers-AutoModels/Model/llama2/generate.py
2024-06-19 18:07:28 +08:00

61 lines
2.6 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoTokenizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for npu model')
parser.add_argument('--repo-id-or-model-path', type=str, default="D:\llm-models\Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--load_in_low_bit', type=str, default="sym_int8",
help='Load in low bit to use')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
load_in_low_bit=args.load_in_low_bit)
print(model)
with torch.inference_mode():
prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
print("finish to load")
print('input length:', len(input_ids[0]))
st = time.time()
output = model.generate(input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict)
end = time.time()
print(f'Inference time: {end-st} s')
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print('-'*20, 'Output', '-'*20)
print(output_str)
print('-'*80)
print('done')