* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
1788 lines
71 KiB
Python
1788 lines
71 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# ===========================================================================
|
|
#
|
|
# This file is adapted from
|
|
# https://github.com/ggerganov/llama.cpp/blob/master/convert.py
|
|
# https://github.com/togethercomputer/redpajama.cpp/blob/master/examples/redpajama/scripts/convert_gptneox_to_ggml.py
|
|
# https://github.com/NouamaneTazi/bloomz.cpp/blob/patch/convert-hf-to-ggml.py
|
|
#
|
|
# MIT License
|
|
#
|
|
# Copyright (c) 2023 Georgi Gerganov
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
import concurrent.futures
|
|
import copy
|
|
import enum
|
|
import faulthandler
|
|
import functools
|
|
import io
|
|
import itertools
|
|
import json
|
|
import math
|
|
import mmap
|
|
import pickle
|
|
import re
|
|
import signal
|
|
import struct
|
|
import sys
|
|
import zipfile
|
|
from abc import ABCMeta, abstractmethod
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Iterable, List,
|
|
Literal, Optional, Sequence, Tuple, TypeVar, Union)
|
|
import numpy as np
|
|
from sentencepiece import SentencePieceProcessor
|
|
from ipex_llm.utils.common import invalidInputError
|
|
import os
|
|
from pathlib import Path
|
|
|
|
if TYPE_CHECKING:
|
|
from typing_extensions import TypeAlias
|
|
|
|
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
|
|
faulthandler.register(signal.SIGUSR1)
|
|
|
|
NDArray = np.ndarray[Any, Any]
|
|
|
|
|
|
__all__ = ['Params',
|
|
'OutputFile',
|
|
'load_some_model',
|
|
'do_necessary_conversions',
|
|
'pick_output_type',
|
|
'convert_to_output_type',
|
|
'load_vocab',
|
|
'default_outfile',
|
|
'_convert_gptneox_hf_to_ggml',
|
|
'_convert_bloom_hf_to_ggml',
|
|
'_convert_starcoder_hf_to_ggml',
|
|
'_convert_chatglm_hf_to_ggml']
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class UnquantizedDataType:
|
|
name: str
|
|
|
|
|
|
DT_F16 = UnquantizedDataType('F16')
|
|
DT_F32 = UnquantizedDataType('F32')
|
|
DT_I32 = UnquantizedDataType('I32')
|
|
DT_BF16 = UnquantizedDataType('BF16')
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class QuantizedDataType:
|
|
groupsize: int
|
|
have_addends: bool
|
|
have_g_idx: bool
|
|
|
|
|
|
DT_Q4_0 = QuantizedDataType(groupsize=32, have_addends=False, have_g_idx=False)
|
|
DT_Q4_1 = QuantizedDataType(groupsize=32, have_addends=True, have_g_idx=False)
|
|
|
|
DataType = Union[UnquantizedDataType, QuantizedDataType]
|
|
|
|
DATA_TYPE_TO_FTYPE = Dict[DataType, int]
|
|
DATA_TYPE_TO_FTYPE = {DT_F32: 0,
|
|
DT_F16: 1,
|
|
DT_Q4_0: 2,
|
|
DT_Q4_1: 3}
|
|
|
|
FTYPE_TO_DATA_TYPE = Dict[int, DataType]
|
|
FTYPE_TO_DATA_TYPE = {ftype: dtype for (dtype, ftype) in DATA_TYPE_TO_FTYPE.items()}
|
|
|
|
DATA_TYPE_TO_NUMPY = Dict[DataType, 'np.dtype[Any]']
|
|
DATA_TYPE_TO_NUMPY = {DT_BF16: np.dtype(np.uint16),
|
|
DT_F16: np.dtype(np.float16),
|
|
DT_F32: np.dtype(np.float32),
|
|
DT_I32: np.dtype(np.int32)}
|
|
|
|
NUMPY_TYPE_TO_DATA_TYPE = Dict['np.dtype[Any]', DataType]
|
|
NUMPY_TYPE_TO_DATA_TYPE = {dtype: data_type for (data_type, dtype) in DATA_TYPE_TO_NUMPY.items()}
|
|
|
|
|
|
class GGMLFileType(enum.Enum):
|
|
AllF32 = 0
|
|
MostlyF16 = 1 # except 1d tensors
|
|
MostlyQ4_0 = 2 # except 1d tensors
|
|
MostlyQ4_1 = 3 # except 1d tensors
|
|
PerLayerIsQ4_1 = 4 # but tok_embeddings.weight and output.weight are F16
|
|
|
|
def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType:
|
|
if len(tensor.shape) == 1:
|
|
# 1D tensors are always F32.
|
|
return DT_F32
|
|
elif self == GGMLFileType.AllF32:
|
|
return DT_F32
|
|
elif self == GGMLFileType.MostlyF16:
|
|
return DT_F16
|
|
elif self == GGMLFileType.MostlyQ4_0:
|
|
return DT_Q4_0
|
|
elif self == GGMLFileType.MostlyQ4_1:
|
|
return DT_Q4_1
|
|
elif self == GGMLFileType.PerLayerIsQ4_1:
|
|
if name in ('output.weight', 'tok_embeddings.weight'):
|
|
return DT_F16
|
|
else:
|
|
return DT_Q4_1
|
|
else:
|
|
invalidInputError(False, 'There exists ValueError.')
|
|
|
|
|
|
def make_tensors_list() -> List[str]:
|
|
ret = [
|
|
'tok_embeddings.weight',
|
|
'norm.weight',
|
|
'output.weight',
|
|
]
|
|
for i in range(80): # maximum number of layer
|
|
ret += [
|
|
f'layers.{i}.attention.wq.weight',
|
|
f'layers.{i}.attention.wk.weight',
|
|
f'layers.{i}.attention.wv.weight',
|
|
f'layers.{i}.attention.wo.weight',
|
|
f'layers.{i}.attention_norm.weight',
|
|
f'layers.{i}.feed_forward.w1.weight',
|
|
f'layers.{i}.feed_forward.w2.weight',
|
|
f'layers.{i}.feed_forward.w3.weight',
|
|
f'layers.{i}.atttention_norm.weight',
|
|
f'layers.{i}.ffn_norm.weight',
|
|
]
|
|
return ret
|
|
|
|
|
|
TENSORS_LIST = make_tensors_list()
|
|
TENSORS_SET = set(TENSORS_LIST)
|
|
|
|
|
|
def find_n_mult(n_ff: int, n_embd: int) -> int:
|
|
# hardcoded magic range
|
|
for n_mult in range(8192, 1, -1):
|
|
calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult
|
|
if calc_ff == n_ff:
|
|
return n_mult
|
|
invalidInputError(False,
|
|
f"Failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).")
|
|
|
|
|
|
@dataclass
|
|
class Params:
|
|
n_vocab: int
|
|
n_embd: int
|
|
n_mult: int
|
|
n_head: int
|
|
n_layer: int
|
|
n_kv_head: Optional[int] # This parameter is only used for Llama 2
|
|
|
|
@staticmethod
|
|
def guessed(model: 'LazyModel') -> 'Params':
|
|
# try transformer naming first
|
|
if "model.embed_tokens.weight" in model:
|
|
n_vocab, n_embd = model["model.embed_tokens.weight"].shape
|
|
else:
|
|
n_vocab, n_embd = model["tok_embeddings.weight"].shape
|
|
|
|
# try transformer naming first
|
|
if "model.layers.0.self_attn.q_proj.weight" in model:
|
|
n_layer = next(i for i in itertools.count()
|
|
if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
|
|
elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
|
|
n_layer = next(i for i in itertools.count()
|
|
if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
|
|
else:
|
|
n_layer = next(i for i in itertools.count()
|
|
if f"layers.{i}.attention.wq.weight" not in model)
|
|
|
|
if n_layer < 1:
|
|
invalidInputError(False, "Failed to guess 'n_layer'. This model is unknown or "
|
|
"unsupported.\nSuggestion: provide 'config.json' of the "
|
|
"model in the same directory containing model files.")
|
|
|
|
n_head = n_embd // 128 # guessed
|
|
|
|
return Params(
|
|
n_vocab=n_vocab,
|
|
n_embd=n_embd,
|
|
n_mult=256,
|
|
n_head=n_head,
|
|
n_layer=n_layer,
|
|
n_kv_head=None,
|
|
)
|
|
|
|
@staticmethod
|
|
def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
|
|
config = json.load(open(config_path))
|
|
|
|
n_vocab = config["vocab_size"]
|
|
n_embd = config["hidden_size"]
|
|
n_head = config["num_attention_heads"]
|
|
n_layer = config["num_hidden_layers"]
|
|
n_ff = config["intermediate_size"]
|
|
n_kv_head = config.get("num_key_value_heads")
|
|
|
|
n_mult = find_n_mult(n_ff, n_embd)
|
|
|
|
return Params(
|
|
n_vocab=n_vocab,
|
|
n_embd=n_embd,
|
|
n_mult=n_mult,
|
|
n_head=n_head,
|
|
n_layer=n_layer,
|
|
n_kv_head=n_kv_head,
|
|
)
|
|
|
|
# LLaMA v2 70B params.json
|
|
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8,
|
|
# "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
|
|
@staticmethod
|
|
def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
|
|
config = json.load(open(config_path))
|
|
|
|
n_vocab = config["vocab_size"]
|
|
n_embd = config["dim"]
|
|
n_head = config["n_heads"]
|
|
n_layer = config["n_layers"]
|
|
n_mult = config["multiple_of"]
|
|
|
|
if n_vocab == -1:
|
|
n_vocab = model["tok_embeddings.weight"].shape[0]
|
|
|
|
return Params(
|
|
n_vocab=n_vocab,
|
|
n_embd=n_embd,
|
|
n_mult=n_mult,
|
|
n_head=n_head,
|
|
n_layer=n_layer,
|
|
n_kv_head=None,
|
|
)
|
|
|
|
@staticmethod
|
|
def load(model_plus: 'ModelPlus') -> 'Params':
|
|
hf_config_path = model_plus.paths[0].parent / "config.json"
|
|
orig_config_path = model_plus.paths[0].parent / "params.json"
|
|
|
|
if hf_config_path.exists():
|
|
params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
|
|
elif orig_config_path.exists():
|
|
params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
|
|
else:
|
|
params = Params.guessed(model_plus.model)
|
|
|
|
print(f'params: n_vocab:{params.n_vocab} n_embd:{params.n_embd}'
|
|
f'n_mult:{params.n_mult} n_head:{params.n_head} n_layer:{params.n_layer}')
|
|
return params
|
|
|
|
|
|
class SentencePieceVocab:
|
|
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path],
|
|
vocabtype: Optional[str]) -> None:
|
|
self.vocabtype = vocabtype
|
|
if self.vocabtype == "bpe":
|
|
self.sentencepiece_tokenizer = json.loads(open(str(fname_tokenizer)).read())
|
|
else:
|
|
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
|
added_tokens = Dict[str, int]
|
|
if fname_added_tokens is not None:
|
|
added_tokens = json.load(open(fname_added_tokens))
|
|
else:
|
|
added_tokens = {}
|
|
if self.vocabtype == "bpe":
|
|
vocab_size: int = len(self.sentencepiece_tokenizer)
|
|
else:
|
|
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
|
|
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
|
actual_ids = sorted(added_tokens.values())
|
|
invalidInputError(expected_ids == actual_ids,
|
|
"Expected added token IDs to be sequential and start "
|
|
f"at {len(added_tokens)}; got {actual_ids}")
|
|
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
|
|
self.added_tokens_list = [text for (text, idx) in items]
|
|
self.vocab_size_base = vocab_size
|
|
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
|
self.fname_tokenizer = fname_tokenizer
|
|
self.fname_added_tokens = fname_added_tokens
|
|
|
|
def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]:
|
|
tokenizer = self.sentencepiece_tokenizer
|
|
if self.vocabtype == "bpe":
|
|
from transformers.models.gpt2 import tokenization_gpt2
|
|
byte_encoder = tokenization_gpt2.bytes_to_unicode()
|
|
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
|
for i, item in enumerate(tokenizer):
|
|
text: bytes
|
|
text = b''.join([x.to_bytes(1, byteorder='big') for x in [byte_decoder[y]
|
|
for y in item]])
|
|
score: float = -i
|
|
yield text, score
|
|
else:
|
|
for i in range(tokenizer.vocab_size()):
|
|
text: bytes
|
|
if tokenizer.is_unknown(i):
|
|
text = " \u2047 ".encode("utf-8")
|
|
elif tokenizer.is_control(i):
|
|
text = b""
|
|
elif tokenizer.is_byte(i):
|
|
piece = tokenizer.id_to_piece(i)
|
|
if len(piece) != 6:
|
|
invalidInputError(False, f"Invalid token: {piece}")
|
|
byte_value = int(piece[3:-1], 16)
|
|
text = struct.pack("B", byte_value)
|
|
else:
|
|
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
|
|
score: float = tokenizer.get_score(i)
|
|
yield text, score
|
|
|
|
def added_tokens(self) -> Iterable[Tuple[bytes, float]]:
|
|
for text in self.added_tokens_list:
|
|
score = -1000.0
|
|
yield text.encode("utf-8"), score
|
|
|
|
def all_tokens(self) -> Iterable[Tuple[bytes, float]]:
|
|
yield from self.sentencepiece_tokens()
|
|
yield from self.added_tokens()
|
|
|
|
def __repr__(self) -> str:
|
|
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens" + \
|
|
f"and {len(self.added_tokens_list)} added tokens>"
|
|
|
|
|
|
class GGMLVocab:
|
|
def __init__(self, tokens: List[Tuple[bytes, float]]):
|
|
self.tokens = tokens
|
|
self.vocab_size = len(tokens)
|
|
|
|
def all_tokens(self) -> Iterable[Tuple[bytes, float]]:
|
|
return self.tokens
|
|
|
|
def __repr__(self) -> str:
|
|
return f"<GGMLVocab with {self.vocab_size} tokens>"
|
|
|
|
|
|
Vocab = Union[SentencePieceVocab, GGMLVocab]
|
|
|
|
|
|
def permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
|
|
if n_kv_head is not None and n_head != n_kv_head:
|
|
n_head //= n_kv_head
|
|
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
|
.swapaxes(1, 2)
|
|
.reshape(weights.shape))
|
|
|
|
|
|
def dequantize_q4(qvalues_pack32: NDArray, scales: NDArray,
|
|
addends: Optional[NDArray], g_idx: Optional[NDArray]) -> NDArray:
|
|
# First reinterpret each row from a list of int32s containing 8 values each
|
|
# to a list of uint8s containing 2 values each.
|
|
qvalues_pack8 = qvalues_pack32.view(np.uint8)
|
|
|
|
# Then split out the two values per int8 (which requires an actual
|
|
# conversion because numpy doesn't natively support int4s).
|
|
qvalues = np.zeros([qvalues_pack8.shape[0], qvalues_pack8.shape[1] * 2], dtype=np.uint8)
|
|
qvalues[:, 0::2] = qvalues_pack8 & 0xf
|
|
qvalues[:, 1::2] = qvalues_pack8 >> 4
|
|
|
|
invalidInputError(addends is None or addends.shape == scales.shape,
|
|
"Fail during dequantization because addends and scales dismatch.")
|
|
invalidInputError(qvalues.shape[0] == scales.shape[0] and
|
|
qvalues.shape[1] % scales.shape[1] == 0,
|
|
"Fail during dequantization because qvalues and scales dismatch.")
|
|
if g_idx is None:
|
|
repeat_count = qvalues.shape[1] // scales.shape[1]
|
|
scales = scales[:, :, np.newaxis]
|
|
if addends is not None:
|
|
addends = addends[:, :, np.newaxis]
|
|
# Reshape so that the below computation broadcasts over scales and addends:
|
|
qvalues.shape = (qvalues.shape[0], scales.shape[1], int(repeat_count))
|
|
else:
|
|
# In this case the scale and addend is selected for each column by g_idx:
|
|
invalidInputError(addends is not None,
|
|
"The addend is selected for each column by g_idx, but got None.")
|
|
scales = scales[:, g_idx]
|
|
addends = addends[:, g_idx]
|
|
if addends is None:
|
|
# Q4_0
|
|
qvalues = qvalues.view(np.int8)
|
|
qvalues -= 8
|
|
# And do the actual 'value = scale * qvalue + addend' computation.
|
|
values = scales * qvalues
|
|
if addends is not None:
|
|
values += addends
|
|
if g_idx is None:
|
|
values.shape = (values.shape[0], values.shape[1] * values.shape[2])
|
|
return values
|
|
|
|
|
|
class Tensor(metaclass=ABCMeta):
|
|
data_type: DataType
|
|
|
|
@abstractmethod
|
|
def astype(self, data_type: DataType) -> 'Tensor':
|
|
pass
|
|
|
|
@abstractmethod
|
|
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'Tensor':
|
|
pass
|
|
|
|
@abstractmethod
|
|
def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor':
|
|
pass
|
|
|
|
@abstractmethod
|
|
def part(self, n_part: int) -> 'UnquantizedTensor':
|
|
pass
|
|
|
|
@abstractmethod
|
|
def to_ggml(self) -> 'GGMLCompatibleTensor':
|
|
pass
|
|
|
|
|
|
def bf16_to_fp32(bf16_arr: np.ndarray) -> np.ndarray:
|
|
invalidInputError(bf16_arr.dtype == np.uint16,
|
|
f"Input array should be of dtype uint16, but got {bf16_arr.dtype}.")
|
|
fp32_arr = bf16_arr.astype(np.uint32) << 16
|
|
return fp32_arr.view(np.float32)
|
|
|
|
|
|
class UnquantizedTensor(Tensor):
|
|
def __init__(self, ndarray: NDArray) -> None:
|
|
self.ndarray = ndarray
|
|
self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
|
|
|
|
def astype(self, data_type: DataType) -> Tensor:
|
|
dtype = DATA_TYPE_TO_NUMPY[data_type]
|
|
if self.data_type == DT_BF16:
|
|
self.ndarray = bf16_to_fp32(self.ndarray)
|
|
return UnquantizedTensor(self.ndarray.astype(dtype))
|
|
|
|
def to_ggml(self) -> 'UnquantizedTensor':
|
|
return self
|
|
|
|
def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor':
|
|
r = self.ndarray.shape[0] // 3
|
|
return UnquantizedTensor(permute(self.ndarray[r * n_part: r * n_part + r, ...], n_head))
|
|
|
|
def part(self, n_part: int) -> 'UnquantizedTensor':
|
|
r = self.ndarray.shape[0] // 3
|
|
return UnquantizedTensor(self.ndarray[r * n_part: r * n_part + r, ...])
|
|
|
|
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'UnquantizedTensor':
|
|
return UnquantizedTensor(permute(self.ndarray, n_head, n_kv_head))
|
|
|
|
|
|
def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None,
|
|
convert: bool = False) -> NDArray:
|
|
tensor = lazy_tensor.load()
|
|
|
|
# double-check:
|
|
actual_shape = list(tensor.ndarray.shape)
|
|
if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
|
|
if convert:
|
|
tensor.ndarray = tensor.ndarray.astype(expected_dtype)
|
|
else:
|
|
invalidInputError(False,
|
|
f'Expected this tensor to have dtype {expected_dtype},'
|
|
f' but got {tensor.ndarray.dtype}.')
|
|
|
|
return tensor.ndarray
|
|
|
|
|
|
class GGMLQuantizedTensor(Tensor):
|
|
data_type: QuantizedDataType
|
|
|
|
def __init__(self, ndarray: NDArray, shape: List[int], data_type: DataType) -> None:
|
|
rows, columns = shape
|
|
invalidInputError(columns % data_type.groupsize == 0,
|
|
"Initialization of GGMLQuantizedTensor failed.")
|
|
words_in_block = 6 if data_type == DT_Q4_1 else 5
|
|
self.ndarray = ndarray.view(dtype=np.uint32) \
|
|
.reshape((rows, columns // data_type.groupsize, words_in_block))
|
|
self.shape = shape[:]
|
|
self.data_type = data_type
|
|
|
|
def astype(self, data_type: DataType) -> Tensor:
|
|
if data_type == self.data_type:
|
|
return self
|
|
scales = self.ndarray[:, :, 0].view(np.float32)
|
|
if self.data_type.have_addends:
|
|
addends = self.ndarray[:, :, 1].view(np.float32)
|
|
else:
|
|
addends = None
|
|
qweights = self.ndarray[:, :, -4:].reshape([self.shape[0], self.shape[1] // 8])
|
|
|
|
dq = dequantize_q4(qweights, scales, addends, g_idx=None)
|
|
return UnquantizedTensor(dq).astype(data_type)
|
|
|
|
def to_ggml(self) -> 'GGMLQuantizedTensor':
|
|
return self
|
|
|
|
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'GGMLQuantizedTensor':
|
|
return GGMLQuantizedTensor(permute(self.ndarray, n_head, n_kv_head),
|
|
self.shape, self.data_type)
|
|
|
|
def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor':
|
|
r = self.ndarray.shape[0] // 3
|
|
return UnquantizedTensor(permute(self.ndarray[r * n_part: r * n_part + r, ...], n_head))
|
|
|
|
def part(self, n_part: int) -> 'UnquantizedTensor':
|
|
r = self.ndarray.shape[0] // 3
|
|
return UnquantizedTensor(self.ndarray[r * n_part: r * n_part + r, ...])
|
|
|
|
|
|
GGMLCompatibleTensor = Union[UnquantizedTensor, GGMLQuantizedTensor]
|
|
|
|
|
|
class DeferredPermutedTensor(Tensor):
|
|
def __init__(self, base: Tensor, n_head: int, n_kv_head: Optional[int] = None) -> None:
|
|
self.base = base
|
|
self.n_head = n_head
|
|
self.n_kv_head = n_kv_head
|
|
self.data_type = self.base.data_type
|
|
|
|
def astype(self, data_type: DataType) -> Tensor:
|
|
return self.base.astype(data_type).permute(self.n_head, self.n_kv_head)
|
|
|
|
def to_ggml(self) -> GGMLCompatibleTensor:
|
|
return self.base.to_ggml().permute(self.n_head, self.n_kv_head)
|
|
|
|
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> Tensor:
|
|
invalidInputError(False, "Shouldn't permute twice.")
|
|
|
|
|
|
class GPTQForLLaMaQuantizedTensor(Tensor):
|
|
def __init__(self, model: 'LazyModel', namebase: str) -> None:
|
|
qweight = load_unquantized(model[f"{namebase}.qweight"], np.int32)
|
|
scales = load_unquantized(model[f"{namebase}.scales"], np.float32, convert=True)
|
|
|
|
bias = model.get(f"{namebase}.bias")
|
|
if bias is not None:
|
|
invalidInputError(not np.any(load_unquantized(bias)),
|
|
'Q4_1 does not support bias')
|
|
|
|
if f"{namebase}.zeros" in model:
|
|
zeros = load_unquantized(model[f"{namebase}.zeros"], np.float32)
|
|
else:
|
|
qzeros = load_unquantized(model[f"{namebase}.qzeros"], np.int32)
|
|
invalidInputError(qzeros.dtype == np.int32,
|
|
'Fail to initiate GPTQForLLaMaQuantizedTensor.')
|
|
zeros = dequantize_q4(qzeros, scales, scales, g_idx=None)
|
|
invalidInputError(zeros.dtype == np.float32,
|
|
'Fail to initiate GPTQForLLaMaQuantizedTensor.')
|
|
|
|
invalidInputError(zeros.shape == scales.shape,
|
|
'Fail to initiate GPTQForLLaMaQuantizedTensor.')
|
|
|
|
# Output is transposed compared to the input, and addends have their sign flipped.
|
|
# Scales and zeros similarly must be transposed but only for newer
|
|
# versions of GPTQ-for-LLaMa; the older versions can be identified by
|
|
# having shape (n_embd, 1).
|
|
qweight = qweight.T
|
|
if scales.shape[1] != 1:
|
|
scales = scales.T
|
|
zeros = zeros.T
|
|
|
|
# Output also has signs flipped for the addends.
|
|
self.qweight = qweight
|
|
self.scales = scales
|
|
self.addends = -zeros
|
|
|
|
self.g_idx = Optional[NDArray]
|
|
if f"{namebase}.g_idx" in model:
|
|
self.g_idx = load_unquantized(model[f"{namebase}.g_idx"], np.int32)
|
|
invalidInputError(self.g_idx.shape == (qweight.shape[1] * 8,),
|
|
'Fail to initiate GPTQForLLaMaQuantizedTensor.')
|
|
else:
|
|
self.g_idx = None
|
|
|
|
self.shape = [self.qweight.shape[0], self.qweight.shape[1] * 8]
|
|
self.data_type = QuantizedDataType(groupsize=self.groupsize(), have_addends=True,
|
|
have_g_idx=(self.g_idx is not None))
|
|
|
|
def inspect(self, row: int, col: int) -> None:
|
|
'''For debugging.'''
|
|
qweight = (self.qweight[row, col // 8] >> (4 * (col & 7))) & 0xf
|
|
if self.g_idx is not None:
|
|
group = self.g_idx[col]
|
|
else:
|
|
group = int(col // self.groupsize())
|
|
scale = self.scales[row, group]
|
|
addend = self.addends[row, group]
|
|
with np.printoptions(precision=None, suppress=True):
|
|
print(f'scale:{scale} addend:{addend} qweight:{qweight}')
|
|
print('possible values:', np.arange(16) * scale + addend)
|
|
print('actual value:', qweight * scale + addend)
|
|
|
|
def astype(self, data_type: DataType) -> Tensor:
|
|
if isinstance(data_type, QuantizedDataType):
|
|
invalidInputError(self.g_idx is None and data_type.have_addends is True
|
|
and data_type.have_g_idx is False,
|
|
"Fail to call `GPTQForLLaMaQuantizedTensor.astype`.")
|
|
return self.regroup(data_type.groupsize)
|
|
|
|
dequantized = dequantize_q4(np.ascontiguousarray(self.qweight), self.scales,
|
|
self.addends, self.g_idx)
|
|
return UnquantizedTensor(dequantized).astype(data_type)
|
|
|
|
def groupsize(self) -> int:
|
|
invalidInputError(self.addends.shape == self.scales.shape and
|
|
self.shape[1] % self.scales.shape[1] == 0,
|
|
"Fail to call `GPTQForLLaMaQuantizedTensor.groupsize`.")
|
|
return self.shape[1] // self.scales.shape[1]
|
|
|
|
def regroup(self, new_groupsize: int = 32) -> 'GPTQForLLaMaQuantizedTensor':
|
|
# Old versions of GPTQ-for-LLaMa shared scales and addends between all the
|
|
# columns in a row. Newer versions share them between every set of N
|
|
# columns in a row, where N is the `groupsize` parameter, usually 128. The
|
|
# output format shares them between every set of 32 columns. To handle
|
|
# this, duplicate scales and addends for every smaller group.
|
|
# (In the above, 'row' and 'column' are in the sense of the output.)
|
|
invalidInputError(self.g_idx is None,
|
|
"Fail to call `GPTQForLLaMaQuantizedTensor.regroup`.")
|
|
old_groupsize = self.groupsize()
|
|
invalidInputError(old_groupsize >= new_groupsize and old_groupsize % new_groupsize == 0
|
|
and old_groupsize,
|
|
"Fail to call `GPTQForLLaMaQuantizedTensor.regroup`.")
|
|
ret = copy.copy(self)
|
|
ret.addends = self.addends.repeat(old_groupsize // new_groupsize, axis=1)
|
|
ret.scales = self.scales.repeat(old_groupsize // new_groupsize, axis=1)
|
|
ret.data_type = QuantizedDataType(groupsize=new_groupsize, have_addends=True,
|
|
have_g_idx=False)
|
|
return ret
|
|
|
|
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> Tensor:
|
|
return DeferredPermutedTensor(self, n_head, n_kv_head)
|
|
|
|
def to_ggml(self) -> GGMLQuantizedTensor:
|
|
# The output format looks like this:
|
|
# For each row:
|
|
# For each group of 32 columns:
|
|
# - addend (float32, 4 bytes)
|
|
# - scale (float32, 4 bytes)
|
|
# - weights (int4 * 32, 16 bytes)
|
|
|
|
invalidInputError(self.groupsize() == 32,
|
|
"Should have been regrouped before converting to ggml.")
|
|
|
|
# Since the output format is mixed between integers and floats, we have
|
|
# to hackily view the floats as int32s just so numpy will let us
|
|
# concatenate them.
|
|
addends_view = self.addends.view(dtype=np.int32)[:, :, np.newaxis]
|
|
scales_view = self.scales.view(dtype=np.int32)[:, :, np.newaxis]
|
|
|
|
# Split into groups of 4 columns (i.e. 32 columns of quantized data):
|
|
grouped = self.qweight.reshape([self.qweight.shape[0], self.qweight.shape[1] // 4, 4])
|
|
|
|
# And concatenate:
|
|
grouped = np.concatenate([scales_view, addends_view, grouped], axis=2, casting='no')
|
|
|
|
return GGMLQuantizedTensor(grouped, self.shape, DT_Q4_1)
|
|
|
|
|
|
@dataclass
|
|
class LazyTensor:
|
|
_load: Callable[[], Tensor]
|
|
shape: List[int]
|
|
data_type: DataType
|
|
description: str
|
|
|
|
def load(self) -> Tensor:
|
|
ret = self._load()
|
|
invalidInputError(ret.data_type == self.data_type and
|
|
(self.data_type, ret.data_type, self.description),
|
|
"Fail to load `LazyTensor`.")
|
|
return ret
|
|
|
|
def astype(self, data_type: DataType) -> 'LazyTensor':
|
|
self.validate_conversion_to(data_type)
|
|
|
|
def load() -> Tensor:
|
|
return self.load().astype(data_type)
|
|
return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
|
|
|
|
def validate_conversion_to(self, data_type: DataType) -> None:
|
|
if data_type == self.data_type:
|
|
return
|
|
if isinstance(data_type, QuantizedDataType):
|
|
invalidInputError(isinstance(self.data_type, QuantizedDataType),
|
|
"Can't turn an unquantized tensor into"
|
|
f" a quantized type ({data_type}).")
|
|
if self.data_type.have_g_idx:
|
|
sys.stderr.write(
|
|
"Error: Input uses the newer GPTQ-for-LLaMa format (using g_idx), "
|
|
"which is not yet natively supported by GGML. For now "
|
|
"you can still convert this model by passing `--outtype f16` to dequantize, "
|
|
"but that will result in a much larger output file for no quality benefit.\n")
|
|
sys.exit(1)
|
|
invalidInputError(not data_type.have_g_idx and self.data_type.have_addends and
|
|
data_type.have_addends,
|
|
"Fail to convert to expected data type.")
|
|
|
|
|
|
LazyModel = Dict[str, LazyTensor]
|
|
|
|
|
|
@dataclass
|
|
class ModelPlus:
|
|
model: LazyModel
|
|
paths: List[Path] # Where this was read from.
|
|
format: Literal['ggml', 'torch', 'safetensors']
|
|
vocab: Optional[Vocab] # For GGML models (which have vocab built in), the vocab.
|
|
|
|
|
|
def merge_sharded(models: List[LazyModel]) -> LazyModel:
|
|
# Original LLaMA models have each file contain one part of each tensor.
|
|
# Use a dict instead of a set to preserve order.
|
|
names = {name: None for model in models for name in model}
|
|
|
|
def convert(name: str) -> LazyTensor:
|
|
lazy_tensors = [model[name] for model in models]
|
|
if len(lazy_tensors) == 1:
|
|
# only one file; don't go through this procedure since there might
|
|
# be quantized tensors
|
|
return lazy_tensors[0]
|
|
if len(lazy_tensors[0].shape) == 1:
|
|
# the tensor is just duplicated in every file
|
|
return lazy_tensors[0]
|
|
if name.startswith('tok_embeddings.') or \
|
|
name.endswith('.attention.wo.weight') or \
|
|
name.endswith('.feed_forward.w2.weight'):
|
|
# split by columns
|
|
axis = 1
|
|
else:
|
|
# split by rows
|
|
axis = 0
|
|
concatenated_shape = list(lazy_tensors[0].shape)
|
|
concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
|
|
|
|
def load() -> UnquantizedTensor:
|
|
ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
|
|
concatenated = np.concatenate(ndarrays, axis=axis)
|
|
return UnquantizedTensor(concatenated)
|
|
description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
|
|
return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
|
|
return {name: convert(name) for name in names}
|
|
|
|
|
|
def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus:
|
|
formats = set(mp.format for mp in models_plus)
|
|
invalidInputError(len(formats) == 1, "The input models are different formats.")
|
|
format = formats.pop()
|
|
paths = [path for mp in models_plus for path in mp.paths]
|
|
# Use the first non-None vocab, if any.
|
|
try:
|
|
vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
|
|
except StopIteration:
|
|
vocab = None
|
|
|
|
if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
|
|
# Transformers models put different tensors in different files, but
|
|
# don't split indivdual tensors between files.
|
|
model = LazyModel
|
|
model = {}
|
|
for mp in models_plus:
|
|
model.update(mp.model)
|
|
else:
|
|
model = merge_sharded([mp.model for mp in models_plus])
|
|
|
|
return ModelPlus(model, paths, format, vocab)
|
|
|
|
|
|
def permute_lazy(lazy_tensor: LazyTensor, n_head: int,
|
|
n_kv_head: Optional[int] = None) -> LazyTensor:
|
|
def load() -> Tensor:
|
|
return lazy_tensor.load().permute(n_head, n_kv_head)
|
|
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type,
|
|
f'permute({n_head}, {n_kv_head}) ' + lazy_tensor.description)
|
|
|
|
|
|
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int) -> LazyTensor:
|
|
def load() -> Tensor:
|
|
return lazy_tensor.load().permute_part(n_part, n_head)
|
|
s = lazy_tensor.shape.copy()
|
|
s[0] = s[0] // 3
|
|
return LazyTensor(load, s, lazy_tensor.data_type,
|
|
f'permute({n_head}) ' + lazy_tensor.description)
|
|
|
|
|
|
def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
|
|
def load() -> Tensor:
|
|
return lazy_tensor.load().part(n_part)
|
|
s = lazy_tensor.shape.copy()
|
|
s[0] = s[0] // 3
|
|
return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
|
|
|
|
|
|
def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel:
|
|
out = {}
|
|
out["tok_embeddings.weight"] = model["model.embed_tokens.weight"]
|
|
out["norm.weight"] = model["model.norm.weight"]
|
|
out["output.weight"] = model["lm_head.weight"]
|
|
|
|
for i in itertools.count():
|
|
if f"model.layers.{i}.self_attn.q_proj.weight" in model:
|
|
out[f"layers.{i}.attention.wq.weight"] = \
|
|
permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head)
|
|
out[f"layers.{i}.attention.wk.weight"] = \
|
|
permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"],
|
|
params.n_head, params.n_kv_head)
|
|
out[f"layers.{i}.attention.wv.weight"] = \
|
|
model[f"model.layers.{i}.self_attn.v_proj.weight"]
|
|
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
|
|
out[f"layers.{i}.attention.wq.weight"] = \
|
|
permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"],
|
|
0, params.n_head)
|
|
out[f"layers.{i}.attention.wk.weight"] = \
|
|
permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"],
|
|
1, params.n_head)
|
|
out[f"layers.{i}.attention.wv.weight"] = \
|
|
part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
|
|
else:
|
|
break
|
|
out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"]
|
|
|
|
out[f"layers.{i}.feed_forward.w1.weight"] = model[f"model.layers.{i}.mlp.gate_proj.weight"]
|
|
out[f"layers.{i}.feed_forward.w2.weight"] = model[f"model.layers.{i}.mlp.down_proj.weight"]
|
|
out[f"layers.{i}.feed_forward.w3.weight"] = model[f"model.layers.{i}.mlp.up_proj.weight"]
|
|
|
|
out[f"layers.{i}.attention_norm.weight"] = \
|
|
model[f"model.layers.{i}.input_layernorm.weight"]
|
|
out[f"layers.{i}.ffn_norm.weight"] = \
|
|
model[f"model.layers.{i}.post_attention_layernorm.weight"]
|
|
return out
|
|
|
|
|
|
def handle_quantization(model: LazyModel) -> LazyModel:
|
|
'''Convert a model with entries for 'foo.qweight', 'foo.scales', etc.
|
|
(which resolve to UnquantizedTensors with the raw data) to one with entries
|
|
for 'foo.weight' (which resolve to QuantizedTensors).
|
|
'''
|
|
def convert(name: str) -> Tuple[str, LazyTensor]:
|
|
if name.endswith(".qweight"):
|
|
namebase = name.rsplit('.', 1)[0]
|
|
orig_name = namebase + ".weight"
|
|
|
|
lazy_tensor = model[name]
|
|
invalidInputError(len(lazy_tensor.shape) == 2,
|
|
"Fail to convert a model with entries for 'foo.qweight'.")
|
|
real_shape = [lazy_tensor.shape[1], lazy_tensor.shape[0] * 8]
|
|
|
|
# Calculate type. This replicates the logic in
|
|
# GPTQForLLaMaQuantizedTensor (which is executed when the modelis
|
|
# actually loaded).
|
|
lazy_scales = model[f"{namebase}.scales"]
|
|
scales_width = 1 if lazy_scales.shape[1] == 1 else lazy_scales.shape[0]
|
|
invalidInputError(real_shape[1] % scales_width == 0,
|
|
"Fail to convert a model with entries for 'foo.qweight'.")
|
|
groupsize = real_shape[1] // scales_width
|
|
have_g_idx = f"{namebase}.g_idx" in model
|
|
data_type = QuantizedDataType(groupsize=groupsize, have_addends=True,
|
|
have_g_idx=have_g_idx)
|
|
|
|
def load() -> Tensor:
|
|
return GPTQForLLaMaQuantizedTensor(model, namebase)
|
|
|
|
return (orig_name, LazyTensor(load, real_shape, data_type, '[quantized]'))
|
|
else:
|
|
return (name, model[name])
|
|
return dict(convert(name) for name in model)
|
|
|
|
# Functionality that simulates `torch.load` but where individual tensors are
|
|
# only loaded into memory on demand, not all at once.
|
|
# PyTorch can't do this natively as of time of writing:
|
|
# - https://github.com/pytorch/pytorch/issues/64327
|
|
# This allows us to de-shard without multiplying RAM usage, and also
|
|
# conveniently drops the PyTorch dependency (though we still need numpy).
|
|
|
|
|
|
@dataclass
|
|
class LazyStorageKind:
|
|
data_type: DataType
|
|
|
|
|
|
@dataclass
|
|
class LazyStorage:
|
|
load: Callable[[int, int], NDArray]
|
|
kind: LazyStorageKind
|
|
description: str
|
|
|
|
|
|
class LazyUnpickler(pickle.Unpickler):
|
|
def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
|
|
super().__init__(fp)
|
|
self.data_base_path = data_base_path
|
|
self.zip_file = zip_file
|
|
|
|
def persistent_load(self, pid: Any) -> Any:
|
|
invalidInputError(pid[0] == 'storage' and isinstance(pid[1], LazyStorageKind),
|
|
"Fail to load.")
|
|
data_type = pid[1].data_type
|
|
filename_stem = pid[2]
|
|
filename = self.data_base_path + '/' + filename_stem
|
|
info = self.zip_file.getinfo(filename)
|
|
|
|
def load(offset: int, elm_count: int) -> NDArray:
|
|
dtype = DATA_TYPE_TO_NUMPY.get(data_type)
|
|
invalidInputError(dtype is not None, "Tensor stored in unsupported format.")
|
|
fp = self.zip_file.open(info)
|
|
fp.seek(offset * dtype.itemsize)
|
|
size = elm_count * dtype.itemsize
|
|
data = fp.read(size)
|
|
invalidInputError(len(data) == size, "Fail to load.")
|
|
return np.frombuffer(data, dtype)
|
|
description = f'storage data_type={data_type} path-in-zip={filename}' + \
|
|
f' path={self.zip_file.filename}'
|
|
return LazyStorage(load=load, kind=pid[1], description=description)
|
|
|
|
# @staticmethod
|
|
def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
|
|
# pyright: ignore[reportSelfClsParameterName]
|
|
requires_grad: Any, backward_hooks: Any,
|
|
metadata: Any = None) -> LazyTensor:
|
|
invalidInputError(isinstance(storage, LazyStorage), "Fail to rebuild `LazyTensor`.")
|
|
|
|
def load() -> UnquantizedTensor:
|
|
elm_count = stride[0] * size[0]
|
|
return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
|
|
description = f'pickled storage_offset={storage_offset} in {storage.description}'
|
|
return LazyTensor(load, list(size), storage.kind.data_type, description)
|
|
|
|
def rebuild_from_type_v2(func, new_type, args, state):
|
|
return func(*args)
|
|
|
|
CLASSES = {
|
|
('torch._tensor', '_rebuild_from_type_v2'): rebuild_from_type_v2,
|
|
('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2,
|
|
('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
|
|
('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
|
|
('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
|
|
('torch', 'IntStorage'): LazyStorageKind(DT_I32),
|
|
('torch', 'Tensor'): LazyTensor,
|
|
}
|
|
|
|
def find_class(self, module: str, name: str) -> Any:
|
|
if not module.startswith('torch'):
|
|
return super().find_class(module, name)
|
|
return self.CLASSES[(module, name)]
|
|
|
|
|
|
def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
|
|
zf = zipfile.ZipFile(outer_fp)
|
|
pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
|
|
invalidInputError(len(pickle_paths) == 1 and pickle_paths is not None,
|
|
"Fail to load torch files.")
|
|
pickle_fp = zf.open(pickle_paths[0], 'r')
|
|
unpickler = LazyUnpickler(pickle_fp,
|
|
data_base_path=pickle_paths[0][:-4],
|
|
zip_file=zf)
|
|
model = unpickler.load()
|
|
as_dict = dict(model.items())
|
|
return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
|
|
|
|
|
|
SAFETENSORS_DATA_TYPES = {
|
|
'BF16': DT_BF16,
|
|
'F16': DT_F16,
|
|
'F32': DT_F32,
|
|
'I32': DT_I32,
|
|
}
|
|
|
|
|
|
def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
|
|
header_size, = struct.unpack('<Q', fp.read(8))
|
|
header = json.loads(fp.read(header_size))
|
|
# Use mmap for the actual data to avoid race conditions with the file offset.
|
|
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
|
|
byte_buf = mapped[8 + header_size:]
|
|
|
|
def convert(info: Dict[str, Any]) -> LazyTensor:
|
|
data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
|
|
numpy_dtype = DATA_TYPE_TO_NUMPY[data_type]
|
|
shape = info['shape']
|
|
begin, end = info['data_offsets']
|
|
invalidInputError(0 <= begin <= end <= len(byte_buf) and
|
|
end - begin == math.prod(shape) * numpy_dtype.itemsize,
|
|
"Fail to load safetensors files.")
|
|
buf = byte_buf[begin:end]
|
|
|
|
def load() -> UnquantizedTensor:
|
|
return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
|
|
description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
|
|
return LazyTensor(load, shape, data_type, description)
|
|
model = {name: convert(info) for (name, info) in header.items()}
|
|
return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
|
|
|
|
|
|
def must_read(fp: IO[bytes], length: int) -> bytes:
|
|
ret = fp.read(length)
|
|
invalidInputError(len(ret) >= length, "Unexpectedly reached end of file.")
|
|
return ret
|
|
|
|
|
|
def lazy_load_ggml_file(fp: io.BufferedReader, path: Path) -> ModelPlus:
|
|
magic = must_read(fp, 4)[::-1]
|
|
if magic in (b'ggmf', b'ggjt'):
|
|
version, = struct.unpack("i", must_read(fp, 4))
|
|
invalidInputError(version == 1, "Fail to load ggml files.")
|
|
else:
|
|
invalidInputError(magic == b'ggml', "Fail to load ggml files.")
|
|
version = None
|
|
n_vocab, n_embd, n_mult, n_head, n_layer, rot, file_type = \
|
|
struct.unpack('<7i', must_read(fp, 28))
|
|
|
|
tokens = []
|
|
for i in range(n_vocab):
|
|
if i == 32000:
|
|
# HACK: GPT4All messed with the format without changing the magic
|
|
# number. Specifically, they changed the vocab section to contain
|
|
# `n_vocab - 1` tokens instead of `n_vocab` (i.e. omitting the
|
|
# extra pad token). Try to detect if we're reading a file like
|
|
# this.
|
|
orig_pos = fp.tell()
|
|
fp.seek(20, io.SEEK_CUR)
|
|
is_gpt4all = fp.read(21) == b'tok_embeddings.weight'
|
|
fp.seek(orig_pos)
|
|
if is_gpt4all:
|
|
break
|
|
|
|
length, = struct.unpack("i", must_read(fp, 4))
|
|
text = must_read(fp, length)
|
|
if magic != b'ggml':
|
|
score, = struct.unpack("f", must_read(fp, 4))
|
|
tokens.append((text, score))
|
|
vocab = GGMLVocab(tokens) if magic != b'ggml' else None
|
|
|
|
model = {}
|
|
# Use mmap for the actual data to avoid race conditions with the file offset.
|
|
off = fp.raw.tell()
|
|
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
|
|
# needed on Windows
|
|
fp.raw.seek(off)
|
|
|
|
def read_tensor() -> None:
|
|
# this is a function so that variables captured in `load` don't change
|
|
shape_len, name_len, ftype = struct.unpack("iii", must_read(fp, 12))
|
|
invalidInputError(0 <= shape_len <= 3, "Fail to read tensors.")
|
|
shape = list(struct.unpack(f"{shape_len}i", must_read(fp, 4 * shape_len)))
|
|
shape = shape[::-1]
|
|
name = must_read(fp, name_len).decode('utf-8')
|
|
data_type = FTYPE_TO_DATA_TYPE[ftype]
|
|
|
|
if magic == b'ggjt':
|
|
fp.seek((fp.tell() + 31) & -32)
|
|
|
|
if data_type == DT_Q4_1:
|
|
# See GPTQForLLaMaQuantizedTensor.ggml_ndarray()
|
|
size = 24 * (shape[1] // 32) * shape[0]
|
|
elif data_type == DT_Q4_0:
|
|
size = 20 * (shape[1] // 32) * shape[0]
|
|
else:
|
|
numpy_dtype = DATA_TYPE_TO_NUMPY[data_type]
|
|
elm_count = math.prod(shape)
|
|
size = elm_count * numpy_dtype.itemsize
|
|
offset = fp.tell()
|
|
buf = mapped[offset:offset+size]
|
|
fp.seek(size, io.SEEK_CUR)
|
|
|
|
def load() -> Tensor:
|
|
if isinstance(data_type, QuantizedDataType):
|
|
ndarray = np.frombuffer(buf, dtype=np.uint32)
|
|
return GGMLQuantizedTensor(ndarray, shape, data_type)
|
|
else:
|
|
return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
|
|
description = f'ggml offset={offset} type={data_type} path={path}'
|
|
model[name] = LazyTensor(load, shape, data_type, description)
|
|
|
|
while fp.read(1) != b'':
|
|
fp.seek(-1, io.SEEK_CUR)
|
|
read_tensor()
|
|
|
|
return ModelPlus(model=model, paths=[path], format='ggml', vocab=vocab)
|
|
|
|
|
|
@functools.lru_cache(maxsize=None)
|
|
def lazy_load_file(path: Path) -> ModelPlus:
|
|
fp = open(path, 'rb')
|
|
first8 = fp.read(8)
|
|
fp.seek(0)
|
|
if first8[:2] == b'PK':
|
|
# A zip file, i.e. PyTorch format
|
|
return lazy_load_torch_file(fp, path)
|
|
elif first8[2:4] == b'gg':
|
|
# GGML format
|
|
return lazy_load_ggml_file(fp, path)
|
|
elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
|
|
# Probably safetensors
|
|
return lazy_load_safetensors_file(fp, path)
|
|
else:
|
|
invalidInputError(False, f"unknown format: {path}.")
|
|
|
|
|
|
In = TypeVar('In')
|
|
Out = TypeVar('Out')
|
|
|
|
|
|
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In],
|
|
concurrency: int) -> Iterable[Out]:
|
|
'''Parallel map, but with backpressure. If the caller doesn't call `next`
|
|
fast enough, this will stop calling `func` at some point rather than
|
|
letting results pile up in memory. Specifically, there is a max of one
|
|
output value buffered per thread.'''
|
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
futures = []
|
|
items_rev = list(iterable)[::-1]
|
|
for i in range(min(concurrency, len(items_rev))):
|
|
futures.append(executor.submit(func, items_rev.pop()))
|
|
while futures:
|
|
result = futures.pop(0).result()
|
|
if items_rev:
|
|
futures.append(executor.submit(func, items_rev.pop()))
|
|
yield result
|
|
|
|
|
|
def check_vocab_size(params: Params, vocab: Vocab) -> None:
|
|
if params.n_vocab != vocab.vocab_size:
|
|
# GGMLVocab comes from the same file as the model so shouldn't mismatch:
|
|
invalidInputError(isinstance(vocab, SentencePieceVocab),
|
|
"Vocab and SentencePieceVocab mismatch.")
|
|
if params.n_vocab == vocab.vocab_size_base:
|
|
print("Ignoring added_tokens.json since model matches vocab size without it.")
|
|
vocab.added_tokens_list = []
|
|
vocab.vocab_size = vocab.vocab_size_base
|
|
return
|
|
msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}"
|
|
if vocab.fname_added_tokens is not None:
|
|
msg += f" combined with {vocab.fname_added_tokens}"
|
|
msg += f" has {vocab.vocab_size})."
|
|
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and \
|
|
vocab.fname_added_tokens is None:
|
|
msg += " Most likely you are missing added_tokens.json,"
|
|
msg += f" which should be in {vocab.fname_tokenizer.parent})."
|
|
invalidInputError(False, msg)
|
|
|
|
|
|
class OutputFile:
|
|
def __init__(self, fname_out: Path) -> None:
|
|
self.fout = open(fname_out, "wb")
|
|
|
|
def write_file_header(self, params: Params, file_type: GGMLFileType) -> None:
|
|
self.fout.write(b"ggjt"[::-1]) # magic
|
|
values = [
|
|
1, # file version
|
|
params.n_vocab,
|
|
params.n_embd,
|
|
params.n_mult,
|
|
params.n_head,
|
|
params.n_layer,
|
|
params.n_embd // params.n_head, # rot (obsolete)
|
|
file_type.value,
|
|
]
|
|
self.fout.write(struct.pack("i" * len(values), *values))
|
|
|
|
def write_tensor_header(self, name: str, shape: Sequence[int], data_type: DataType) -> None:
|
|
sname = name.encode('utf-8')
|
|
self.fout.write(struct.pack("iii", len(shape), len(sname), DATA_TYPE_TO_FTYPE[data_type]))
|
|
self.fout.write(struct.pack("i" * len(shape), *shape[::-1]))
|
|
self.fout.write(sname)
|
|
self.fout.seek((self.fout.tell() + 31) & -32)
|
|
|
|
def write_vocab(self, vocab: Vocab) -> None:
|
|
for text, score in vocab.all_tokens():
|
|
self.fout.write(struct.pack("i", len(text)))
|
|
self.fout.write(text)
|
|
self.fout.write(struct.pack("f", score))
|
|
|
|
@staticmethod
|
|
def write_vocab_only(fname_out: Path, vocab: Vocab) -> None:
|
|
of = OutputFile(fname_out)
|
|
params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0, n_head=1, n_layer=0)
|
|
of = OutputFile(fname_out)
|
|
of.write_file_header(params, file_type=GGMLFileType.AllF32)
|
|
of.write_vocab(vocab)
|
|
of.fout.close()
|
|
|
|
@staticmethod
|
|
def write_all(fname_out: Path, params: Params, file_type: GGMLFileType, model: LazyModel,
|
|
vocab: Vocab) -> None:
|
|
check_vocab_size(params, vocab)
|
|
of = OutputFile(fname_out)
|
|
of.write_file_header(params, file_type)
|
|
print("Writing vocab...")
|
|
of.write_vocab(vocab)
|
|
|
|
def do_item(item: Tuple[str, LazyTensor]) -> NDArray:
|
|
name, lazy_tensor = item
|
|
return lazy_tensor.load().to_ggml().ndarray
|
|
|
|
ndarrays = bounded_parallel_map(do_item, model.items(), concurrency=8)
|
|
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
|
|
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
|
|
padi = len(str(len(model)))
|
|
print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16}"
|
|
f"| type {lazy_tensor.data_type}")
|
|
of.write_tensor_header(name, lazy_tensor.shape, lazy_tensor.data_type)
|
|
ndarray.tofile(of.fout)
|
|
of.fout.close()
|
|
|
|
|
|
def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType:
|
|
wq_type = model["layers.0.attention.wq.weight"].data_type
|
|
if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)):
|
|
return GGMLFileType.AllF32
|
|
if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16):
|
|
return GGMLFileType.MostlyF16
|
|
if output_type_str == "q4_1" or (output_type_str is None and
|
|
isinstance(wq_type, QuantizedDataType) and wq_type.have_addends):
|
|
if isinstance(model["output.weight"].data_type, QuantizedDataType):
|
|
return GGMLFileType.MostlyQ4_1
|
|
else:
|
|
return GGMLFileType.PerLayerIsQ4_1
|
|
if output_type_str == "q4_0" or \
|
|
(output_type_str is None and isinstance(wq_type, QuantizedDataType)):
|
|
return GGMLFileType.MostlyQ4_0
|
|
name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
|
|
invalidInputError(False, f"Unexpected combination of types: {name_to_type}.")
|
|
|
|
|
|
def do_necessary_conversions(model: LazyModel, params: Params) -> LazyModel:
|
|
model = handle_quantization(model)
|
|
|
|
if "lm_head.weight" in model:
|
|
model = convert_transformers_to_orig(model, params)
|
|
model = filter_and_sort_tensors(model)
|
|
|
|
return model
|
|
|
|
|
|
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
|
|
return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
|
|
for (name, tensor) in model.items()}
|
|
|
|
|
|
def nth_multifile_path(path: Path, n: int) -> Optional[Path]:
|
|
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
|
|
the nth path in the model.
|
|
'''
|
|
# Support the following patterns:
|
|
patterns = [
|
|
# - x.00.pth, x.01.pth, etc.
|
|
(r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
|
|
# - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
|
|
(r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
|
|
# x.bin, x.bin.1, etc.
|
|
(r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
|
|
]
|
|
for regex, replacement in patterns:
|
|
if re.search(regex, path.name):
|
|
new_path = path.with_name(re.sub(regex, replacement, path.name))
|
|
if new_path.exists():
|
|
return new_path
|
|
return None
|
|
|
|
|
|
def find_multifile_paths(path: Path) -> List[Path]:
|
|
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
|
|
the whole list of paths in the model.
|
|
'''
|
|
ret = []
|
|
for i in itertools.count():
|
|
nth_path = nth_multifile_path(path, i)
|
|
if nth_path is None:
|
|
break
|
|
ret.append(nth_path)
|
|
if not ret:
|
|
# No matches. This should only happen if the file was named, e.g.,
|
|
# foo.0, and there was no file named foo. Oh well, try to process it
|
|
# as a single file.
|
|
return [path]
|
|
return ret
|
|
|
|
|
|
def load_some_model(path: Path) -> ModelPlus:
|
|
'''Load a model of any supported format.'''
|
|
# Be extra-friendly and accept either a file or a directory:
|
|
if path.is_dir():
|
|
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
|
|
files = [file for glob in globs for file in path.glob(glob)]
|
|
if not files:
|
|
# Try GGML too, but with lower priority, since if both a non-GGML
|
|
# model and a GGML model exist in the same directory, we assume the
|
|
# latter was converted from the former.
|
|
files = list(path.glob("ggml-model*.bin*"))
|
|
invalidInputError(files, f"Can't find model in directory {path}.")
|
|
invalidInputError(len(files) == 1,
|
|
f"Found multiple models in {path}, not sure which to pick: {files}.")
|
|
path = files[0]
|
|
|
|
paths = find_multifile_paths(path)
|
|
models_plus = []
|
|
for path in paths:
|
|
print(f"Loading model file {path}")
|
|
models_plus.append(lazy_load_file(path))
|
|
|
|
model_plus = merge_multifile_models(models_plus)
|
|
return model_plus
|
|
|
|
|
|
def filter_and_sort_tensors(model: LazyModel) -> LazyModel:
|
|
return {name: model[name] for name in TENSORS_LIST if name in model}
|
|
|
|
|
|
def load_vocab(path: Path, vocabtype: Optional[str]) -> SentencePieceVocab:
|
|
# Be extra-friendly and accept either a file or a directory. Also, if it's
|
|
# a directory, it might be the model directory, and tokenizer.model might
|
|
# be in the parent of that.
|
|
print(f"vocabtype: {vocabtype}")
|
|
if path.is_dir():
|
|
vocab_file = "tokenizer.model"
|
|
if vocabtype == 'bpe':
|
|
vocab_file = "vocab.json"
|
|
path2 = path / vocab_file
|
|
# Use `.parent` instead of /.. to handle the symlink case better.
|
|
path3 = path.parent / vocab_file
|
|
if path2.exists():
|
|
path = path2
|
|
elif path3.exists():
|
|
path = path3
|
|
else:
|
|
invalidInputError(False,
|
|
f"Could not find tokenizer.model in {path} or its parent; "
|
|
"if it's in another directory, pass the directory as --vocab-dir")
|
|
added_tokens_path = path.parent / "added_tokens.json"
|
|
print(f"Loading vocab file {path}")
|
|
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None,
|
|
vocabtype)
|
|
|
|
|
|
def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
|
|
namestr = {
|
|
GGMLFileType.AllF32: "f32",
|
|
GGMLFileType.MostlyF16: "f16",
|
|
GGMLFileType.MostlyQ4_0: "q4_0",
|
|
GGMLFileType.MostlyQ4_1: "q4_1",
|
|
GGMLFileType.PerLayerIsQ4_1: "q4_1",
|
|
}[file_type]
|
|
ret = model_paths[0] / f"ggml-model-{namestr}.bin"
|
|
if ret in model_paths:
|
|
sys.stderr.write(
|
|
f"Error: Default output path ({ret}) would overwrite the input. "
|
|
"Please explicitly specify a path using --outfile.\n")
|
|
sys.exit(1)
|
|
return ret
|
|
|
|
|
|
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|
def bytes_to_unicode():
|
|
"""
|
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
The reversible bpe codes work on unicode strings.
|
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
When you're at something like a 10B token dataset you end up needing around 5K for decent
|
|
coverage. This is a significant percentage of your normal, say, 32K bpe vocab.
|
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
"""
|
|
bs = list(range(ord("!"), ord("~")+1)) + list(range(ord("¡"), ord("¬")+1)) + \
|
|
list(range(ord("®"), ord("ÿ")+1))
|
|
cs = bs[:]
|
|
n = 0
|
|
for b in range(2**8):
|
|
if b not in bs:
|
|
bs.append(b)
|
|
cs.append(2**8+n)
|
|
n += 1
|
|
cs = [chr(n) for n in cs]
|
|
return dict(zip(bs, cs))
|
|
|
|
|
|
def _convert_gptneox_hf_to_ggml(model_path, outfile_dir, outtype):
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
import torch
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
torch_dtype=torch.float16
|
|
if outtype == "f16" else torch.float32)
|
|
|
|
model.eval()
|
|
for p in model.parameters():
|
|
p.requires_grad = False
|
|
hparams = model.config.to_dict()
|
|
|
|
filestem = Path(model_path).stem
|
|
fn_out = os.path.join(outfile_dir, f"ggml-{filestem}-{outtype}.bin")
|
|
fout = open(fn_out, "wb")
|
|
|
|
ggml_file_magic = 0x67676d66 # 0x67676d6c is unversioned
|
|
ggml_file_version = 0x00000001 # v1
|
|
|
|
if outtype == "f16":
|
|
ftype = 1
|
|
else:
|
|
ftype = 0
|
|
|
|
hparams["multiple_of"] = 1
|
|
fout.write(struct.pack("i", ggml_file_magic)) # magic: ggmf in hex
|
|
fout.write(struct.pack("i", ggml_file_version))
|
|
fout.write(struct.pack("i", hparams["vocab_size"]))
|
|
fout.write(struct.pack("i", hparams["max_position_embeddings"]))
|
|
fout.write(struct.pack("i", hparams["hidden_size"]))
|
|
fout.write(struct.pack("i", hparams["num_attention_heads"]))
|
|
fout.write(struct.pack("i", hparams["num_hidden_layers"]))
|
|
fout.write(struct.pack("i", int((hparams["hidden_size"] / hparams["num_attention_heads"])
|
|
* hparams["rotary_pct"]))) # rotary_dim
|
|
fout.write(struct.pack("i", int(hparams["use_parallel_residual"])))
|
|
fout.write(struct.pack("i", ftype))
|
|
|
|
dot_token = tokenizer.encode(".")[0]
|
|
vocab = tokenizer.vocab
|
|
id2token = {v: k for k, v in vocab.items()}
|
|
for i in range(hparams["vocab_size"]):
|
|
if i in id2token:
|
|
text = id2token[i].encode('utf-8')
|
|
else:
|
|
text = tokenizer.decode([i]).encode('utf-8')
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
|
|
list_vars = model.state_dict()
|
|
|
|
for name in list_vars.keys():
|
|
if name.startswith('gpt_neox.layers.'):
|
|
if 'attention.masked_bias' in name or 'attention.rotary_emb.inv_freq' in name or \
|
|
'attention.bias' in name:
|
|
continue
|
|
# No gradients for these
|
|
list_vars[name].requires_grad = False
|
|
src = name
|
|
nn = name
|
|
|
|
data = list_vars[src].squeeze().numpy()
|
|
data = data.astype(np.float32)
|
|
|
|
n_dims = len(data.shape)
|
|
|
|
# default type is fp32
|
|
ftype_cur = 0
|
|
if ftype == 1 and n_dims > 1:
|
|
data = data.astype(np.float16)
|
|
ftype_cur = 1
|
|
else:
|
|
data = data.astype(np.float32)
|
|
|
|
# header
|
|
str = name.encode('utf-8')
|
|
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
|
|
for i in range(n_dims):
|
|
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
|
fout.write(str)
|
|
|
|
# data
|
|
data.tofile(fout)
|
|
|
|
fout.close()
|
|
|
|
|
|
def _convert_bloom_hf_to_ggml(model_path, outfile_dir, outtype):
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
|
import torch
|
|
conv_map = {'word_embeddings': 'tok_embeddings',
|
|
'word_embeddings_layernorm': 'norm',
|
|
'input_layernorm': 'attention_norm',
|
|
'self_attention.query_key_value': 'attention.query_key_value',
|
|
'self_attention.dense': 'attention.wo',
|
|
'post_attention_layernorm': 'ffn_norm',
|
|
'mlp.dense_h_to_4h': 'feed_forward.w1',
|
|
'mlp.dense_4h_to_h': 'feed_forward.w2',
|
|
'ln_f': 'output_norm',
|
|
'lm_head': 'output',
|
|
}
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
config = AutoConfig.from_pretrained(model_path)
|
|
hparams = config.to_dict()
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, config=config,
|
|
torch_dtype=torch.float16
|
|
if outtype == "f16" else torch.float32,
|
|
low_cpu_mem_usage=True)
|
|
|
|
filestem = Path(model_path).stem
|
|
fn_out = os.path.join(outfile_dir, f"ggml-{filestem}-{outtype}.bin")
|
|
fout = open(fn_out, "wb")
|
|
|
|
if outtype == "f16":
|
|
ftype = 1
|
|
else:
|
|
ftype = 0
|
|
|
|
hparams["multiple_of"] = 1
|
|
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
|
fout.write(struct.pack("i", hparams["vocab_size"]))
|
|
# fout.write(struct.pack("i", hparams["seq_length"]))
|
|
fout.write(struct.pack("i", hparams["hidden_size"]))
|
|
fout.write(struct.pack("i", hparams["multiple_of"]))
|
|
fout.write(struct.pack("i", hparams["n_head"]))
|
|
fout.write(struct.pack("i", hparams["n_layer"]))
|
|
fout.write(struct.pack("i", ftype))
|
|
|
|
dot_token = tokenizer.encode(".")[0]
|
|
for i in range(hparams["vocab_size"]):
|
|
text = tokenizer.decode([i]).encode('utf-8')
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
|
|
list_vars = model.state_dict()
|
|
for name in list_vars.keys():
|
|
src = name
|
|
nn = name
|
|
if name != "lm_head.weight":
|
|
nn = nn.split(".")[1:]
|
|
else:
|
|
nn = nn.split(".")
|
|
|
|
if nn[0] == "h":
|
|
nn[0] = "layers"
|
|
mapped = conv_map[".".join(nn[2:-1])]
|
|
name = ".".join(nn[:2] + [mapped] + nn[-1:])
|
|
else:
|
|
mapped = conv_map[".".join(nn[:-1])]
|
|
name = ".".join([mapped] + nn[-1:])
|
|
|
|
if "query_key_value" in src:
|
|
q, k, v = list_vars[src].reshape(config.n_head, 3, -1).unbind(1)
|
|
list_vars[src] = torch.cat([q, k, v], dim=0).reshape_as(list_vars[src])
|
|
|
|
data = list_vars[src].squeeze().numpy()
|
|
data = data.astype(np.float32)
|
|
|
|
n_dims = len(data.shape)
|
|
|
|
# default type is fp32
|
|
ftype_cur = 0
|
|
if ftype == 1 and n_dims > 1:
|
|
data = data.astype(np.float16)
|
|
ftype_cur = 1
|
|
|
|
# header
|
|
str = name.encode('utf-8')
|
|
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
|
|
for i in range(n_dims):
|
|
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
|
fout.write(str)
|
|
|
|
# data
|
|
data.tofile(fout)
|
|
|
|
fout.close()
|
|
|
|
|
|
def _convert_starcoder_hf_to_ggml(model_path, outfile_dir, outtype):
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
|
import torch
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
|
hparams = config.to_dict()
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, config=config,
|
|
torch_dtype=torch.float16
|
|
if outtype == "f16" else torch.float32,
|
|
# low_cpu_mem_usage=True,
|
|
trust_remote_code=True,
|
|
offload_state_dict=True)
|
|
|
|
list_vars = model.state_dict()
|
|
|
|
encoder = tokenizer.vocab
|
|
# Add added_tokens (special tokens) to the encoder
|
|
encoder.update(tokenizer.get_added_vocab())
|
|
|
|
filestem = Path(model_path).stem
|
|
fn_out = os.path.join(outfile_dir, f"ggml-{filestem}-{outtype}.bin")
|
|
fout = open(fn_out, "wb")
|
|
|
|
if outtype == "f16":
|
|
ftype = 1
|
|
else:
|
|
ftype = 0
|
|
|
|
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
|
vocab_size = hparams["vocab_size"]
|
|
fout.write(struct.pack("i", vocab_size))
|
|
# fout.write(struct.pack("i", len(encoder)))
|
|
fout.write(struct.pack("i", hparams["n_positions"]))
|
|
fout.write(struct.pack("i", hparams["n_embd"]))
|
|
fout.write(struct.pack("i", hparams["n_head"]))
|
|
fout.write(struct.pack("i", hparams["n_layer"]))
|
|
fout.write(struct.pack("i", ftype))
|
|
|
|
byte_encoder = bytes_to_unicode()
|
|
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
|
|
|
fout.write(struct.pack("i", vocab_size))
|
|
|
|
counter = 0
|
|
# sort by value
|
|
for key in sorted(encoder, key=encoder.get):
|
|
text = bytearray([byte_decoder[c] for c in key])
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
counter += 1
|
|
|
|
# TODO: Repeat last token until vocab_size
|
|
while counter < vocab_size:
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
counter += 1
|
|
|
|
for name in list_vars.keys():
|
|
data = list_vars[name].squeeze().numpy()
|
|
print("Processing variable: " + name + " with shape: ", data.shape)
|
|
|
|
# rename headers to keep compatibility
|
|
if name == "transformer.ln_f.weight":
|
|
name = "model/ln_f/g"
|
|
elif name == "transformer.ln_f.bias":
|
|
name = "model/ln_f/b"
|
|
elif name == "transformer.wte.weight":
|
|
name = "model/wte"
|
|
elif name == "transformer.wpe.weight":
|
|
name = "model/wpe"
|
|
elif name == "lm_head.weight":
|
|
name = "model/lm_head"
|
|
elif re.match(r"transformer.h\.\d+\.ln_1\.weight", name):
|
|
i = re.findall("\d+", name)[0]
|
|
name = f"model/h{i}/ln_1/g"
|
|
elif re.match(r"transformer.h\.\d+\.ln_1\.bias", name):
|
|
i = re.findall("\d+", name)[0]
|
|
name = f"model/h{i}/ln_1/b"
|
|
elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.weight", name):
|
|
i = re.findall("\d+", name)[0]
|
|
name = f"model/h{i}/attn/c_attn/w"
|
|
elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.bias", name):
|
|
i = re.findall("\d+", name)[0]
|
|
name = f"model/h{i}/attn/c_attn/b"
|
|
elif re.match(r"transformer.h\.\d+\.attn\.c_proj\.weight", name):
|
|
i = re.findall("\d+", name)[0]
|
|
name = f"model/h{i}/attn/c_proj/w"
|
|
elif re.match(r"transformer.h.\d+.attn.c_proj.bias", name):
|
|
i = re.findall("\d+", name)[0]
|
|
name = f"model/h{i}/attn/c_proj/b"
|
|
elif re.match(r"transformer.h.\d+.ln_2.weight", name):
|
|
i = re.findall("\d+", name)[0]
|
|
name = f"model/h{i}/ln_2/g"
|
|
elif re.match(r"transformer.h.\d+.ln_2.bias", name):
|
|
i = re.findall("\d+", name)[0]
|
|
name = f"model/h{i}/ln_2/b"
|
|
elif re.match(r"transformer.h.\d+.mlp.c_fc.weight", name):
|
|
i = re.findall("\d+", name)[0]
|
|
name = f"model/h{i}/mlp/c_fc/w"
|
|
elif re.match(r"transformer.h.\d+.mlp.c_fc.bias", name):
|
|
i = re.findall("\d+", name)[0]
|
|
name = f"model/h{i}/mlp/c_fc/b"
|
|
elif re.match(r"transformer.h.\d+.mlp.c_proj.weight", name):
|
|
i = re.findall("\d+", name)[0]
|
|
name = f"model/h{i}/mlp/c_proj/w"
|
|
elif re.match(r"transformer.h.\d+.mlp.c_proj.bias", name):
|
|
i = re.findall("\d+", name)[0]
|
|
name = f"model/h{i}/mlp/c_proj/b"
|
|
else:
|
|
print("Unrecognized variable name. %s", name)
|
|
|
|
# we don't need these
|
|
if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"):
|
|
print(" Skipping variable: " + name)
|
|
continue
|
|
|
|
n_dims = len(data.shape)
|
|
|
|
ftype_cur = 0
|
|
if ftype == 1:
|
|
if (name == "model/wte" or name == "model/lm_head" or name[-2:] == "/g" or
|
|
name[-2:] == "/w") and n_dims == 2:
|
|
print(" Converting to float16")
|
|
data = data.astype(np.float16)
|
|
ftype_cur = 1
|
|
else:
|
|
print(" Converting to float32")
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
|
|
"model/h.*/attn/c_attn/w"
|
|
"model/h.*/attn/c_proj/w"
|
|
"model/h.*/mlp/c_fc/w"
|
|
"model/h.*/mlp/c_proj/w"
|
|
if name[-14:] == "/attn/c_attn/w" or name[-14:] == "/attn/c_attn/b":
|
|
print(" Duplicate K,V heads to use MHA instead of MQA")
|
|
|
|
embed_dim = hparams["n_embd"]
|
|
head_dim = embed_dim // hparams["n_head"]
|
|
|
|
# ((n_heads + 2) * head_dim, hidden_dim) -> (3 * n_heads * head_dim, hidden_dim)
|
|
q, k, v = np.split(data,
|
|
(hparams["n_head"] * head_dim,
|
|
(hparams["n_head"] + 1) * head_dim),
|
|
axis=0)
|
|
# duplicate k, v along the first axis (head_dim, hidden_dim) ->
|
|
# (n_heads * head_dim, hidden_dim)
|
|
if len(k.shape) == 2:
|
|
k = np.tile(k, (hparams["n_head"], 1))
|
|
v = np.tile(v, (hparams["n_head"], 1))
|
|
elif len(k.shape) == 1:
|
|
k = np.tile(k, (hparams["n_head"]))
|
|
v = np.tile(v, (hparams["n_head"]))
|
|
# concat q, k, v along the first axis (n_heads * head_dim, hidden_dim) ->
|
|
# (3 * n_heads * head_dim, hidden_dim)
|
|
data = np.concatenate((q, k, v), axis=0)
|
|
|
|
# header
|
|
str = name.encode('utf-8')
|
|
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
|
|
for i in range(n_dims):
|
|
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
|
fout.write(str)
|
|
|
|
# data
|
|
data.tofile(fout)
|
|
|
|
fout.close()
|
|
|
|
|
|
def _convert_chatglm_hf_to_ggml(model_path, outfile_dir, outtype):
|
|
filestem = Path(model_path).stem
|
|
outfile = os.path.join(outfile_dir, f"bigdl_llm_chatglm_{outtype}.bin")
|
|
invalidInputError(outtype in ["q4_0", "q4_1"],
|
|
"For now we only support quantization type 'q4_0' and 'q4_1' "
|
|
"in chatglm family.")
|
|
from ipex_llm.utils.convert_chatglm import _convert_chatglm_hf_to_ggml_
|
|
return _convert_chatglm_hf_to_ggml_(model_path,
|
|
outfile,
|
|
outtype)
|