ipex-llm/python/llm/example/GPU/HF-Transformers-AutoModels/Model/aquila2/generate.py
Jin Qiao 440cfe18ed LLM: GPU Example Updates for Windows (#9992)
* modify aquila

* modify aquila2

* add baichuan

* modify baichuan2

* modify blue-lm

* modify chatglm3

* modify chinese-llama2

* modiy codellama

* modify distil-whisper

* modify dolly-v1

* modify dolly-v2

* modify falcon

* modify flan-t5

* modify gpt-j

* modify internlm

* modify llama2

* modify mistral

* modify mixtral

* modify mpt

* modify phi-1_5

* modify qwen

* modify qwen-vl

* modify replit

* modify solar

* modify starcoder

* modify vicuna

* modify voiceassistant

* modify whisper

* modify yi

* modify aquila2

* modify baichuan

* modify baichuan2

* modify blue-lm

* modify chatglm2

* modify chatglm3

* modify codellama

* modify distil-whisper

* modify dolly-v1

* modify dolly-v2

* modify flan-t5

* modify llama2

* modify llava

* modify mistral

* modify mixtral

* modify phi-1_5

* modify qwen-vl

* modify replit

* modify solar

* modify starcoder

* modify yi

* correct the comments

* remove cpu_embedding in code for whisper and distil-whisper

* remove comment

* remove cpu_embedding for voice assistant

* revert modify voice assistant

* modify for voice assistant

* add comment for voice assistant

* fix comments

* fix comments
2024-01-29 11:25:11 +08:00

74 lines
3.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/BAAI/AquilaChat2-7B/tree/main/predict.py
AQUILA2_PROMPT_FORMAT = "<|startofpiece|>{prompt}<|endofpiece|>"
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Predict Tokens using `generate()` API for Aquila2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="BAAI/AquilaChat2-7B",
help='The huggingface repo id for the Aquila2 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="AI是什么",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True)
model = model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = AQUILA2_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output = output.cpu()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end - st} s')
print('-' * 20, 'Prompt', '-' * 20)
print(prompt)
print('-' * 20, 'Output', '-' * 20)
print(output_str)