ipex-llm/python/llm/example/GPU/PyTorch-Models/Model/flan-t5/generate.py
Qiyuan Gong 0284801fbd [LLM] IPEX auto importer turn on by default for XPU (#9730)
* Set BIGDL_IMPORT_IPEX default to true, i.e., auto import IPEX for XPU.
* Remove import intel_extension_for_pytorch as ipex from GPU example.
* Add support for bigdl-core-xe-21.
2023-12-22 16:20:32 +08:00

77 lines
3.2 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from bigdl.llm import optimize_model
# you could tune the prompt based on your own model,
FLAN_T5_PROMPT_FORMAT = "<|User|>:{prompt}"
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for flan-t5 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="google/flan-t5-xxl",
help='The huggingface repo id for the flan-t5 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="Translate to German: My name is Arthur",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model
model = AutoModelForSeq2SeqLM.from_pretrained(model_path,
trust_remote_code=True,
torch_dtype='auto',
low_cpu_mem_usage=True)
# With only one line to enable BigDL-LLM optimization on model
# "wo" module is not converted due to some issues of T5 model
# (https://github.com/huggingface/transformers/issues/20287),
# "lm_head" module is not converted to generate outputs with better quality
model = optimize_model(model, modules_to_not_convert=["wo", "lm_head"])
model = model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = FLAN_T5_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output = output.cpu()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)