ipex-llm/python/llm/example/GPU/PyTorch-Models/Model/chatglm3/streamchat.py
Qiyuan Gong 0284801fbd [LLM] IPEX auto importer turn on by default for XPU (#9730)
* Set BIGDL_IMPORT_IPEX default to true, i.e., auto import IPEX for XPU.
* Remove import intel_extension_for_pytorch as ipex from GPU example.
* Add support for bigdl-core-xe-21.
2023-12-22 16:20:32 +08:00

74 lines
2.8 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
import numpy as np
from transformers import AutoModel, AutoTokenizer
from bigdl.llm import optimize_model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Stream Chat for ChatGLM3 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/chatglm3-6b",
help='The huggingface repo id for the ChatGLM3 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--question', type=str, default="晚上睡不着应该怎么办",
help='Qustion you want to ask')
parser.add_argument('--disable-stream', action="store_true",
help='Disable stream chat')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
disable_stream = args.disable_stream
# Load model
model = AutoModel.from_pretrained(model_path,
trust_remote_code=True,
torch_dtype='auto',
low_cpu_mem_usage=True)
# With only one line to enable BigDL-LLM optimization on model
model = optimize_model(model)
model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
with torch.inference_mode():
prompt = args.question
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=32)
# start inference
if disable_stream:
# Chat
response, history = model.chat(tokenizer, args.question, history=[])
print('-'*20, 'Chat Output', '-'*20)
print(response)
else:
# Stream chat
response_ = ""
print('-'*20, 'Stream Chat Output', '-'*20)
for response, history in model.stream_chat(tokenizer, args.question, history=[]):
print(response.replace(response_, ""), end="")
response_ = response