* Set BIGDL_IMPORT_IPEX default to true, i.e., auto import IPEX for XPU. * Remove import intel_extension_for_pytorch as ipex from GPU example. * Add support for bigdl-core-xe-21.
74 lines
2.8 KiB
Python
74 lines
2.8 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import torch
|
|
import time
|
|
import argparse
|
|
import numpy as np
|
|
|
|
from transformers import AutoModel, AutoTokenizer
|
|
from bigdl.llm import optimize_model
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Stream Chat for ChatGLM2 model')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/chatglm2-6b",
|
|
help='The huggingface repo id for the ChatGLM2 model to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument('--question', type=str, default="晚上睡不着应该怎么办",
|
|
help='Qustion you want to ask')
|
|
parser.add_argument('--disable-stream', action="store_true",
|
|
help='Disable stream chat')
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
disable_stream = args.disable_stream
|
|
|
|
# Load model
|
|
model = AutoModel.from_pretrained(model_path,
|
|
trust_remote_code=True,
|
|
torch_dtype='auto',
|
|
low_cpu_mem_usage=True)
|
|
|
|
# With only one line to enable BigDL-LLM optimization on model
|
|
model = optimize_model(model)
|
|
|
|
model.to('xpu')
|
|
|
|
# Load tokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
|
trust_remote_code=True)
|
|
|
|
with torch.inference_mode():
|
|
prompt = args.question
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
|
# ipex model needs a warmup, then inference time can be accurate
|
|
output = model.generate(input_ids,
|
|
max_new_tokens=32)
|
|
|
|
# start inference
|
|
if disable_stream:
|
|
# Chat
|
|
response, history = model.chat(tokenizer, args.question, history=[])
|
|
print('-'*20, 'Chat Output', '-'*20)
|
|
print(response)
|
|
else:
|
|
# Stream chat
|
|
response_ = ""
|
|
print('-'*20, 'Stream Chat Output', '-'*20)
|
|
for response, history in model.stream_chat(tokenizer, args.question, history=[]):
|
|
print(response.replace(response_, ""), end="")
|
|
response_ = response
|