* Set BIGDL_IMPORT_IPEX default to true, i.e., auto import IPEX for XPU. * Remove import intel_extension_for_pytorch as ipex from GPU example. * Add support for bigdl-core-xe-21.  | 
			||
|---|---|---|
| .. | ||
| generate.py | ||
| README.md | ||
Aquila2
In this directory, you will find examples on how you could use BigDL-LLM optimize_model API to accelerate Aquila2 models. For illustration purposes, we utilize the BAAI/AquilaChat2-7B as reference Aquila2 models.
Requirements
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to here for more information.
Example: Predict Tokens using generate() API
In the example generate.py, we show a basic use case for a Aquila2 model to predict the next N tokens using generate() API, with BigDL-LLM INT4 optimizations on Intel GPUs.
1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to here.
After installing conda, create a Python environment for BigDL-LLM:
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
2. Configures OneAPI environment variables
source /opt/intel/oneapi/setvars.sh
3. Run
For optimal performance on Arc, it is recommended to set several environment variables.
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
python ./generate.py --prompt 'AI是什么?'
In the example, several arguments can be passed to satisfy your requirements:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the huggingface repo id for the Aquila2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'BAAI/AquilaChat2-7B'.--prompt PROMPT: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be'AI是什么?'.--n-predict N_PREDICT: argument defining the max number of tokens to predict. It is default to be32.
2.3 Sample Output
BAAI/AquilaChat2-7B
Inference time: xxxx s
-------------------- Prompt --------------------
<|startofpiece|>AI是什么?<|endofpiece|>
-------------------- Output --------------------
<|startofpiece|>AI是什么?<|endofpiece|>人工智能(Artificial Intelligence,简称AI)是计算机科学中一个极为重要的研究领域,旨在让计算机模仿人类的智能,包括学习、推理、识别物体