* Set BIGDL_IMPORT_IPEX default to true, i.e., auto import IPEX for XPU. * Remove import intel_extension_for_pytorch as ipex from GPU example. * Add support for bigdl-core-xe-21. |
||
|---|---|---|
| .. | ||
| generate.py | ||
| readme.md | ||
StarCoder
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on StarCoder models on Intel GPUs. For illustration purposes, we utilize the bigcode/starcoder as a reference StarCoder model.
0. Requirements
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to here for more information.
Example: Predict Tokens using generate() API
In the example generate.py, we show a basic use case for an StarCoder model to predict the next N tokens using generate() API, with BigDL-LLM INT4 optimizations on Intel GPUs.
1. Install
We suggest using conda to manage environment:
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
2. Configures OneAPI environment variables
source /opt/intel/oneapi/setvars.sh
3. Run
For optimal performance on Arc, it is recommended to set several environment variables.
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the huggingface repo id for the StarCoder model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'bigcode/starcoder'.--prompt PROMPT: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be'def print_hello_world():'.--n-predict N_PREDICT: argument defining the max number of tokens to predict. It is default to be32.
Sample Output
bigcode/starcoder
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [02:07<00:00, 18.23s/it]
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.
Inference time: xxxx s
-------------------- Prompt --------------------
def print_hello_world():
-------------------- Output --------------------
def print_hello_world():
print("Hello World!")
def print_hello_name(name):
print(f"Hello {name}!")
def print_