* Remove model with optimize_model=False in NPU verified models tables, and remove related example * Remove experimental in run optimized model section title * Unify model table order & example cmd * Move embedding example to separate folder & update quickstart example link * Add Quickstart reference in main NPU readme * Small fix * Small fix * Move save/load examples under NPU/HF-Transformers-AutoModels * Add low-bit and polish arguments for LLM Python examples * Small fix * Add low-bit and polish arguments for Multi-Model examples * Polish argument for Embedding models * Polish argument for LLM CPP examples * Add low-bit and polish argument for Save-Load examples * Add accuracy tuning tips for examples * Update NPU qucikstart accuracy tuning with low-bit optimizations * Add save/load section to qucikstart * Update CPP example sample output to EN * Add installation regarding cmake for CPP examples * Small fix * Small fix * Small fix * Small fix * Small fix * Small fix * Unify max prompt length to 512 * Change recommended low-bit for Qwen2.5-3B-Instruct to asym_int4 * Update based on comments * Small fix
		
			
				
	
	
		
			106 lines
		
	
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			106 lines
		
	
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
						|
from transformers import AutoTokenizer
 | 
						|
from ipex_llm.utils.common.log4Error import invalidInputError
 | 
						|
 | 
						|
 | 
						|
# you could tune the prompt based on your own model,
 | 
						|
LLAMA2_PROMPT_FORMAT = """<s> [INST] <<SYS>>
 | 
						|
 | 
						|
<</SYS>>
 | 
						|
 | 
						|
{prompt} [/INST]
 | 
						|
"""
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
 | 
						|
                        help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--save-directory', type=str, default=None,
 | 
						|
                        help='The path to save the low-bit model.')
 | 
						|
    parser.add_argument('--load-directory', type=str, default=None,
 | 
						|
                        help='The path to load the low-bit model.')
 | 
						|
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
    parser.add_argument("--max-context-len", type=int, default=1024)
 | 
						|
    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
						|
    parser.add_argument('--low-bit', type=str, default="sym_int4",
 | 
						|
                        help='Low bit optimizations that will be applied to the model.')
 | 
						|
    
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
    save_directory = args.save_directory
 | 
						|
    load_directory = args.load_directory
 | 
						|
 | 
						|
    if save_directory:
 | 
						|
        # first time to load and save
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(
 | 
						|
            model_path,
 | 
						|
            torch_dtype=torch.float16,
 | 
						|
            trust_remote_code=True,
 | 
						|
            attn_implementation="eager",
 | 
						|
            load_in_low_bit=args.low_bit,
 | 
						|
            optimize_model=True,
 | 
						|
            max_context_len=args.max_context_len,
 | 
						|
            max_prompt_len=args.max_prompt_len,
 | 
						|
            save_directory=save_directory
 | 
						|
        )
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        tokenizer.save_pretrained(save_directory)
 | 
						|
        print(f"Finish to load model from {model_path} and save to {save_directory}")
 | 
						|
    elif load_directory:
 | 
						|
        # load low-bit model
 | 
						|
        model = AutoModelForCausalLM.load_low_bit(
 | 
						|
            load_directory,
 | 
						|
            attn_implementation="eager",
 | 
						|
            torch_dtype=torch.float16,
 | 
						|
            optimize_model=True,
 | 
						|
            max_context_len=args.max_context_len,
 | 
						|
            max_prompt_len=args.max_prompt_len
 | 
						|
        )
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(load_directory, trust_remote_code=True)
 | 
						|
        print(f"Finish to load model from {load_directory}")
 | 
						|
    else:
 | 
						|
        invalidInputError(False,
 | 
						|
                          "Both `--save-directory` and `--load-directory` are None, please provide one of this.")
 | 
						|
 | 
						|
    # Generate predicted tokens
 | 
						|
    with torch.inference_mode():
 | 
						|
        for i in range(3):
 | 
						|
            prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
						|
            _input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
						|
 | 
						|
            st = time.time()
 | 
						|
            output = model.generate(
 | 
						|
                _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
 | 
						|
            )
 | 
						|
            end = time.time()
 | 
						|
 | 
						|
            print(f"Inference time: {end-st} s")
 | 
						|
            input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
 | 
						|
            print("-" * 20, "Input", "-" * 20)
 | 
						|
            print(input_str)
 | 
						|
            output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
						|
            print("-" * 20, "Output", "-" * 20)
 | 
						|
            print(output_str)
 |