ipex-llm/python/llm/example/GPU/HuggingFace/LLM/baichuan2/README.md
Xu, Shuo 47da3c999f
Add --modelscope in GPU examples for minicpm, minicpm3, baichuan2 (#12564)
* Add --modelscope for more models

* minicpm

---------

Co-authored-by: ATMxsp01 <shou.xu@intel.com>
2024-12-19 17:25:46 +08:00

4.9 KiB
Raw Permalink Blame History

Baichuan

In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Baichuan2 models on Intel GPUs. For illustration purposes, we utilize the baichuan-inc/Baichuan2-7B-Chat (or baichuan-inc/Baichuan2-7B-Chat for ModelScope) as a reference Baichuan model.

0. Requirements

To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to here for more information.

Example: Predict Tokens using generate() API

In the example generate.py, we show a basic use case for a Baichuan model to predict the next N tokens using generate() API, with IPEX-LLM INT4 optimizations on Intel GPUs.

1. Install

1.1 Installation on Linux

We suggest using conda to manage environment:

conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers_stream_generator  # additional package required for Baichuan-7B-Chat to conduct generation

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0

1.2 Installation on Windows

We suggest using conda to manage environment:

conda create -n llm python=3.11 libuv
conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers_stream_generator  # additional package required for Baichuan-7B-Chat to conduct generation

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0

2. Configures OneAPI environment variables for Linux

Note

Skip this step if you are running on Windows.

This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.

source /opt/intel/oneapi/setvars.sh

3. Runtime Configurations

For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.

3.1 Configurations for Linux

For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1

Note: Please note that libtcmalloc.so can be installed by conda install -c conda-forge -y gperftools=2.10.

For Intel iGPU
export SYCL_CACHE_PERSISTENT=1

3.2 Configurations for Windows

For Intel iGPU and Intel Arc™ A-Series Graphics
set SYCL_CACHE_PERSISTENT=1

Note

For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.

4. Running examples

# for Hugging Face model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT

# for ModelScope model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --modelscope

Arguments info:

  • --repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the Hugging Face or ModelScope repo id for the Baichuan model (e.g baichuan-inc/Baichuan2-7B-Chat) to be downloaded, or the path to the checkpoint folder. It is default to be 'baichuan-inc/Baichuan2-7B-Chat'.
  • --prompt PROMPT: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be 'AI是什么'.
  • --n-predict N_PREDICT: argument defining the max number of tokens to predict. It is default to be 32.
  • --modelscope: using ModelScope as model hub instead of Hugging Face.

Sample Output

baichuan-inc/Baichuan2-7B-Chat

Inference time: xxxx s
-------------------- Prompt --------------------
<reserved_106> AI是什么 <reserved_107>
-------------------- Output --------------------
<reserved_106> AI是什么 <reserved_107>AI是人工智能Artificial Intelligence的缩写它是指让计算机或其他设备模拟人类智能的技术。通过使用大量数据和算法AI可以学习、