ipex-llm/python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2/generate.py
Yuwen Hu 8c36b5bdde
Add qwen2 example (#11252)
* Add GPU example for Qwen2

* Update comments in README

* Update README for Qwen2 GPU example

* Add CPU example for Qwen2

Sample Output under README pending

* Update generate.py and README for CPU Qwen2

* Update GPU example for Qwen2

* Small update

* Small fix

* Add Qwen2 table

* Update README for Qwen2 CPU and GPU

Update sample output under README

---------

Co-authored-by: Zijie Li <michael20001122@gmail.com>
2024-06-07 10:29:33 +08:00

80 lines
3 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
import numpy as np
from transformers import AutoTokenizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Qwen2-7B-Instruct')
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-7B-Instruct",
help='The huggingface repo id for the Qwen2 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="AI是什么",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
from ipex_llm.transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
prompt = args.prompt
# Generate predicted tokens
with torch.inference_mode():
# The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2-7B-Instruct#quickstart
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt")
st = time.time()
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=args.n_predict
)
end = time.time()
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(response)