ipex-llm/python/llm/dev/benchmark/ceval/evaluators/qwen.py
Wang, Jian4 9df70d95eb
Refactor bigdl.llm to ipex_llm (#24)
* Rename bigdl/llm to ipex_llm

* rm python/llm/src/bigdl

* from bigdl.llm to from ipex_llm
2024-03-22 15:41:21 +08:00

154 lines
5.4 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# refer to https://github.com/QwenLM/Qwen/blob/main/eval/evaluate_chat_ceval.py
import re
from tqdm import tqdm
import torch
from thefuzz import process
from transformers import AutoTokenizer
from transformers.generation import GenerationConfig
from ipex_llm.transformers import AutoModelForCausalLM
from evaluators.evaluator import Evaluator
class QwenEvaluator(Evaluator):
def __init__(self, choices, model_path="Qwen/Qwen-7B-Chat", device="xpu", qtype="sym_int4"):
super(QwenEvaluator, self).__init__(choices, model_path, device, qtype)
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_path,
trust_remote_code=True
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_path,
load_in_low_bit=self.qtype,
optimize_model=True,
use_cache=True,
trust_remote_code=True
).eval().to(self.device)
self.model.generation_config = GenerationConfig.from_pretrained(
self.model_path,
trust_remote_code=True
)
self.model.generation_config.do_sample = False # use greedy decoding
self.model.generation_config.repetition_penalty = 1.0 # disable repetition penalty
def process_before_extraction(self, gen, question, choice_dict):
question_split = question.rstrip("").split("")[-1].split("_")
if len(question_split[0].strip()) > 4:
gen = gen.replace(question_split[0], "答案是")
if len(question_split[-1].strip()) > 4:
gen = gen.replace(question_split[-1], "")
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
gen = gen.replace(val.rstrip(""), key)
return gen
def count_substr(self, gen, pattern):
return len(re.findall(pattern, gen))
def extract_choice(self, gen, prompt, choice_list):
res = re.search(
r"(?:(?:选|选择|选定)[:]?\s*|(?:(?:答案|选项)(?![^ABCD]{0,10}?(?:不|非)[^ABCD]{0,10}?(?:是|选|为||:|】))[^ABCD]{0,10}?(?:是|选|为||:|】))[^ABCD]{0,10}?)(A|B|C|D)(?:选项)?(?:\)|。|\.||,||、|A|B|C|D|$||:|\)|)",
gen,
)
if res is None:
res = re.search(
r"(A|B|C|D)(?:选?项)?(?![^ABCD]{0,4}?(?:不|非)[^ABCD]{0,4}?(?:正确|对[的,。:]|符合))[^ABCD]{0,4}?(?:正确|对[的,。:]|符合)",
gen,
)
if res is None:
res = re.search(r"^[\(]?(A|B|C|D)(?:。|\)||\.||,|||:|$)", gen)
if res is None:
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)
if res is None:
return self.choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
return res.group(1)
def format_example(self, line):
example = line["question"] + "\n\n"
for choice in self.choices:
example += f'{choice}. {line[f"{choice}"]}\n'
return example
def extract_answer(self, response, row):
prompt = row["question"]
gen = self.process_before_extraction(
response, prompt, {choice: row[choice] for choice in self.choices}
)
if not isinstance(prompt, str):
prompt = prompt[0]
pred = self.extract_choice(gen, prompt, [row[choice] for choice in self.choices])
return pred
@torch.no_grad()
def eval_subject(
self,
subject_name,
test_df,
eval_type="validation" # "test","validation"
):
if eval_type == "validation":
responses = []
result = []
score = []
for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
question = self.format_example(row)
response, _ = self.model.chat(
self.tokenizer,
question,
history=None,
)
pred = self.extract_answer(response, row)
if "answer" in row:
correct = 1 if pred == row["answer"] else 0
score.append(correct)
responses.append(response)
result.append(pred)
if score:
correct_ratio = 100 * sum(score) / len(score)
else:
correct_ratio = 0
return correct_ratio, None
elif eval_type == "test":
answers = {}
for i, row in tqdm(test_df.iterrows(), total=len(test_df)):
question = self.format_example(row)
response, _ = self.model.chat(
self.tokenizer,
question,
history=None,
)
pred = self.extract_answer(response, row)
answers[str(i)] = pred
return None, answers