# Native Format You may also convert Hugging Face *Transformers* models into native INT4 format for maximum performance as follows. > [!NOTE] > Currently only llama/bloom/gptneox/starcoder/chatglm model families are supported; you may use the corresponding API to load the converted model. (For other models, you can use the Hugging Face ``transformers`` format as described [here](./hugging_face_format.md)) ```python # convert the model from ipex_llm import llm_convert ipex_llm_path = llm_convert(model='/path/to/model/', outfile='/path/to/output/', outtype='int4', model_family="llama") # load the converted model # switch to ChatGLMForCausalLM/GptneoxForCausalLM/BloomForCausalLM/StarcoderForCausalLM to load other models from ipex_llm.transformers import LlamaForCausalLM llm = LlamaForCausalLM.from_pretrained("/path/to/output/model.bin", native=True, ...) # run the converted model input_ids = llm.tokenize(prompt) output_ids = llm.generate(input_ids, ...) output = llm.batch_decode(output_ids) ``` > [!NOTE] > See the complete example [here](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Native-Models)