# SOLAR In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate SOLAR models. For illustration purposes, we utilize the [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) as a reference SOLAR model. ## Requirements To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. ## Example: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a SOLAR model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations. ### 1. Install We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). After installing conda, create a Python environment for BigDL-LLM: ```bash conda create -n llm python=3.9 # recommend to use Python 3.9 conda activate llm pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option pip install transformers==4.35.2 # required by SOLAR ``` ### 2. Run After setting up the Python environment, you could run the example by following steps. #### 2.1 Client On client Windows machines, it is recommended to run directly with full utilization of all cores: ```powershell python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT ``` More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. #### 2.2 Server For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. E.g. on Linux, ```bash # set BigDL-LLM env variables source bigdl-llm-init # e.g. for a server with 48 cores per socket export OMP_NUM_THREADS=48 numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?' ``` More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. #### 2.3 Arguments Info In the example, several arguments can be passed to satisfy your requirements: - `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the SOLAR model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'upstage/SOLAR-10.7B-Instruct-v1.0'`. - `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'What is AI?'`. - `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`. #### 2.4 Sample Output #### [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) ```log Inference time: XXXX s -------------------- Output -------------------- ### User: What is AI? ### Assistant: AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It involves the development of ``` ```log Inference time: XXXX s -------------------- Output -------------------- ### User: AI是什么? ### Assistant: AI, 全称为人工智能(Artificial Intelligence),是计算机科学、心理学、语言学、逻 ```