# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This file is adapted from # https://huggingface.co/docs/transformers/en/perplexity # import argparse import torch from tqdm import tqdm from datasets import concatenate_datasets, load_dataset from ipex_llm.utils.common import invalidInputError parser = argparse.ArgumentParser() parser.add_argument("--model_path", required=True, type=str) parser.add_argument("--dataset", type=str, default=None) parser.add_argument("--data_path", type=str, default=None) parser.add_argument("--chunk_size", type=int, default=512) parser.add_argument("--stride", type=int, default=0) parser.add_argument("--device", type=str, default="xpu") parser.add_argument("--precision", type=str, default="sym_int4") parser.add_argument("--use-cache", action="store_true") parser.add_argument("--max_length", type=int, default=None) args = parser.parse_args() if args.precision == "fp16": # ipex fp16 from transformers import AutoModelForCausalLM if "xpu" in args.device: import intel_extension_for_pytorch as ipex model = AutoModelForCausalLM.from_pretrained(args.model_path, use_cache=args.use_cache, trust_remote_code=True) model = model.half() else: # ipex-llm from ipex_llm.transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(args.model_path, load_in_low_bit=args.precision, use_cache=args.use_cache, trust_remote_code=True) model = model.half() model = model.to(args.device) model = model.eval() from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True) if args.dataset: def parse_kwargs(kwstr): kvpair = [item.split('=') for item in kwstr.split(',') if item != ""] return {k:v for k, v in kvpair} test = load_dataset(**parse_kwargs(args.dataset), split="test")["text"] encodings = tokenizer("\n\n".join(test), return_tensors="pt") elif args.data_path: with open(args.data_path, "rb") as f: data = f.read() encodings = tokenizer(data.decode("utf-8").strip("\n"), return_tensors="pt") else: raise invalidInputError(False, "Must specify either dataset or datapath.") if not args.max_length: try: max_length = model.config.max_position_embeddings except: max_length = model.config.seq_length # max_length in config of chatglm is 'seq_length' else: max_length = args.max_length stride = args.chunk_size if args.stride <= 0 else args.stride seq_len = encodings.input_ids.size(1) num_chunks = seq_len // stride nlls = [] prev_end_loc = 0 for i in tqdm(range(num_chunks)): begin_loc = i * stride if args.stride > 0: end_loc = min(begin_loc + max_length, seq_len) trg_len = end_loc - prev_end_loc # may be different from stride on last loop else: end_loc = begin_loc + stride trg_len = -stride//2 input_ids = encodings.input_ids[:, begin_loc:end_loc].to(args.device) if args.stride == 0: input_ids[:, 0] = tokenizer.bos_token_id target_ids = input_ids.clone() target_ids[:, :-trg_len] = -100 with torch.no_grad(): outputs = model(input_ids, labels=target_ids) # loss is calculated using CrossEntropyLoss which averages over valid labels # N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels # to the left by 1. neg_log_likelihood = outputs.loss nlls.append(neg_log_likelihood) if "xpu" in args.device: torch.xpu.empty_cache() prev_end_loc = end_loc if end_loc == seq_len: break ppl = torch.exp(torch.stack(nlls).mean()) print("Final ppl estimate: {}".format(ppl.item()))