# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import time import torch import argparse from ipex_llm.transformers.npu_model import EmbeddingModel from transformers.utils import logging logger = logging.get_logger(__name__) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Predict Tokens using `generate()` API for npu model" ) parser.add_argument( "--repo-id-or-model-path", type=str, default="maidalun1020/bce-embedding-base_v1", help="The huggingface repo id for the bce-embedding model to be downloaded" ", or the path to the huggingface checkpoint folder", ) parser.add_argument("--lowbit-path", type=str, default="", help="The path to the lowbit model folder, leave blank if you do not want to save. \ If path not exists, lowbit model will be saved there. \ Else, lowbit model will be loaded.", ) parser.add_argument('--prompt', type=str, default="'sentence_0', 'sentence_1'", help='Prompt to infer') parser.add_argument("--max-context-len", type=int, default=1024) parser.add_argument("--max-prompt-len", type=int, default=512) parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False) parser.add_argument("--intra-pp", type=int, default=2) parser.add_argument("--inter-pp", type=int, default=2) args = parser.parse_args() model_path = args.repo_id_or_model_path model = EmbeddingModel( model_path, torch_dtype=torch.float16, trust_remote_code=True, attn_implementation="eager", optimize_model=True, max_context_len=args.max_context_len, max_prompt_len=args.max_prompt_len, intra_pp=args.intra_pp, inter_pp=args.inter_pp, transpose_value_cache=not args.disable_transpose_value_cache, ) # list of sentences split_items = args.prompt.split(',') sentences = [item.strip().strip("'") for item in split_items] # extract embeddings st = time.time() embeddings = model.encode(sentences) end = time.time() print(f'Inference time: {end-st} s') print(embeddings)