# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse from transformers import LlamaTokenizer from ipex_llm.transformers import AutoModelForCausalLM # you could tune the prompt based on your own model, # here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style LLAMA2_PROMPT_FORMAT = """### HUMAN: {prompt} ### RESPONSE: """ if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model') parser.add_argument('--model', type=str, required=True, help='Path to a gguf model') parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') parser.add_argument('--low_bit', type=str, default="sym_int4", help='what low_bit to run bigdl-llm') args = parser.parse_args() model_path = args.model # Load gguf model and vocab, then convert them to IPEX-LLM model and huggingface tokenizer model, tokenizer = AutoModelForCausalLM.from_gguf(model_path) model = model.to('xpu') # Generate predicted tokens with torch.inference_mode(): prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt) input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') st = time.time() output = model.generate(input_ids, max_new_tokens=args.n_predict) torch.xpu.synchronize() end = time.time() output = output.cpu() output_str = tokenizer.decode(output[0], skip_special_tokens=True) print(f'Inference time: {end-st} s') print('-'*20, 'Output', '-'*20) print(output_str)