# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse import numpy as np from transformers import AutoTokenizer if __name__ == '__main__': parser = argparse.ArgumentParser(description='Qwen2-7B-Instruct') parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-7B-Instruct", help='The huggingface repo id for the Qwen2 model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="AI是什么?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path from ipex_llm.transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, optimize_model=True, trust_remote_code=True, use_cache=True) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) prompt = args.prompt # Generate predicted tokens with torch.inference_mode(): # The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2-7B-Instruct#quickstart messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt") st = time.time() generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=args.n_predict ) end = time.time() generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(f'Inference time: {end-st} s') print('-'*20, 'Prompt', '-'*20) print(prompt) print('-'*20, 'Output', '-'*20) print(response)