# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import warnings from langchain.chains import LLMChain from langchain_community.llms import IpexLLM from langchain_core.prompts import PromptTemplate warnings.filterwarnings("ignore", category=UserWarning, message=".*padding_mask.*") def main(args): question = args.question model_path = args.model_path low_bit_model_path = args.target_path template ="""{question}""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = IpexLLM.from_model_id( model_id=model_path, model_kwargs={ "temperature": 0, "max_length": 64, "trust_remote_code": True, "device": "xpu", }, ) llm.model.save_low_bit(low_bit_model_path) del llm llm_lowbit = IpexLLM.from_model_id_low_bit( model_id=low_bit_model_path, tokenizer_id=model_path, # tokenizer_name=saved_lowbit_model_path, # copy the tokenizers to saved path if you want to use it this way model_kwargs={ "temperature": 0, "max_length": 64, "trust_remote_code": True, "device": "xpu", }, ) llm_chain = prompt | llm_lowbit output = llm_chain.invoke(question) print("====output=====") print(output) if __name__ == '__main__': parser = argparse.ArgumentParser(description='TransformersLLM Langchain Chat Example') parser.add_argument('-m','--model-path', type=str, required=True, help='the path to transformers model') parser.add_argument('-t','--target-path',type=str,required=True, help='the path to save the low bit model') parser.add_argument('-q', '--question', type=str, default='What is AI?', help='qustion you want to ask.') args = parser.parse_args() main(args)