# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import argparse def convert_and_load(repo_id_or_model_path, n_threads): from bigdl.llm.ggml.transformers import AutoModelForCausalLM # here you may input the HuggingFace repo id directly as the value of `pretrained_model_name_or_path`. # This will allow the pre-trained model to be downloaded directly from the HuggingFace repository. # The downloaded model will then be converted to binary format with int4 dtype weights, # and saved into the cache_dir folder. # # if you already have the pre-trained model downloaded, you can provide the path to # the downloaded folder as the value of `pretrained_model_name_or_path`` llm = AutoModelForCausalLM.from_pretrained( pretrained_model_name_or_path=repo_id_or_model_path, model_family='llama', dtype='int4', cache_dir='./', n_threads=n_threads) # if you want to explicitly convert the pre-trained model, you can use the `convert_model` API # to convert the downloaded Huggungface checkpoint first, # and then load the binary checkpoint directly. # # from bigdl.llm.ggml import convert_model # # model_path = repo_id_or_model_path # output_ckpt_path = convert_model( # input_path=model_path, # output_path='./', # dtype='int4', # model_family='llama') # # llm = AutoModelForCausalLM.from_pretrained( # pretrained_model_name_or_path=output_ckpt_path, # model_family='llama', # n_threads=n_threads) return llm def inference(llm, prompt, repo_id_or_model_path): # Option 1: Use HuggingFace transformers tokenizer print('-'*20, ' HuggingFace transformers tokenizer ', '-'*20) from transformers import LlamaTokenizer print('Please note that the loading of HuggingFace transformers tokenizer may takes some time.\n') tokenizer = LlamaTokenizer.from_pretrained(repo_id_or_model_path) st = time.time() # please note that the prompt here can either be a string or a list of string tokens_id = tokenizer(prompt).input_ids output_tokens_id = llm.generate(tokens_id, max_new_tokens=32) output = tokenizer.batch_decode(output_tokens_id) print(f'Inference time: {time.time()-st} s') print(f'Output:\n{output}') # Option 2: Use bigdl-llm based tokenizer print('-'*20, ' bigdl-llm based tokenizer ', '-'*20) st = time.time() # please note that the prompt here can either be a string or a list of string tokens_id = llm.tokenize(prompt) output_tokens_id = llm.generate(tokens_id, max_new_tokens=32) output = llm.batch_decode(output_tokens_id) print(f'Inference time: {time.time()-st} s') print(f'Output:\n{output}') # Option 3: fast forward print('-'*20, ' fast forward ', '-'*20) st = time.time() output = llm(prompt, # please note that the prompt here can ONLY be a string max_tokens=32) print(f'Inference time (fast forward): {time.time()-st} s') print(f'Output:\n{output}') def main(): parser = argparse.ArgumentParser(description='LLaMA pipeline example') parser.add_argument('--thread-num', type=int, default=2, required=True, help='Number of threads to use for inference') parser.add_argument('--repo-id-or-model-path', type=str, default="decapoda-research/llama-7b-hf", help='The huggingface repo id for LLaMA family model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default='Q: What is AI? A:', help='Prompt to infer') args = parser.parse_args() # Step 1: convert and load int4 model llm = convert_and_load(repo_id_or_model_path=args.repo_id_or_model_path, n_threads=args.thread_num) # Step 2: conduct inference inference(llm=llm, prompt=args.prompt, repo_id_or_model_path=args.repo_id_or_model_path) if __name__ == '__main__': main()