# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import time import argparse from bigdl.llm import optimize_model from datasets import load_dataset from transformers import AutoModelForSpeechSeq2Seq, pipeline from transformers.models.whisper import WhisperFeatureExtractor, WhisperTokenizer if __name__ == '__main__': parser = argparse.ArgumentParser(description='Recognize Long Segment using `generate()` API for Distil-Whisper model') parser.add_argument('--repo-id-or-model-path', type=str, default="distil-whisper/distil-large-v2", help='The huggingface repo id for the Distil-Whisper model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--repo-id-or-data-path', type=str, default="distil-whisper/librispeech_long", help='The huggingface repo id for the audio dataset to be downloaded' ', or the path to the huggingface dataset folder') parser.add_argument('--language', type=str, default="english", help='language to be transcribed') parser.add_argument('--batch-size', type=int, default=16, help='The batch_size of pipeline inference, ' 'it usually equals of length of the audio divided by chunk-length.') parser.add_argument('--chunk-length', type=int, default=15, help="The maximum time lengths of chuncks of sampling_rate samples used to trim" "and pad longer or shorter audio sequences. Default to be 30s.") args = parser.parse_args() model_path = args.repo_id_or_model_path dataset_path = args.repo_id_or_data_path # Load dummy dataset and read audio files dataset = load_dataset(dataset_path, "clean", split="validation") audio = dataset[0]["audio"] model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path) model = optimize_model(model) model.config.forced_decoder_ids = None pipe = pipeline( "automatic-speech-recognition", model=model, feature_extractor=WhisperFeatureExtractor.from_pretrained(model_path), tokenizer= WhisperTokenizer.from_pretrained(model_path, language=args.language), chunk_length_s=args.chunk_length, ) start = time.time() prediction = pipe(audio, batch_size=args.batch_size)["text"] print(f"inference time is {time.time()-start}") print(prediction)