# Baichuan2 In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Baichuan2 models. For illustration purposes, we utilize the [baichuan-inc/Baichuan2-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat) as a reference Baichuan model. ## 0. Requirements To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. ## Example: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a Baichuan model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations. ### 1. Install We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 conda activate llm pip install ipex-llm[all] # install ipex-llm with 'all' option pip install transformers_stream_generator # additional package required for Baichuan-13B-Chat to conduct generation ``` ### 2. Run ``` python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Baichuan2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'baichuan-inc/Baichuan2-13B-Chat'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. > **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. > > Please select the appropriate size of the Baichuan model based on the capabilities of your machine. #### 2.1 Client On client Windows machine, it is recommended to run directly with full utilization of all cores: ```powershell python ./generate.py ``` #### 2.2 Server For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. E.g. on Linux, ```bash # set IPEX-LLM env variables source ipex-llm-init # e.g. for a server with 48 cores per socket export OMP_NUM_THREADS=48 numactl -C 0-47 -m 0 python ./generate.py ``` #### 2.3 Sample Output #### [baichuan-inc/Baichuan2-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat) ```log Inference time: xxxx s -------------------- Prompt -------------------- AI是什么? -------------------- Output -------------------- AI是什么? 人工智能(AI)是指由计算机系统执行的任务,这些任务通常需要人类智能才能完成。AI的目标是使计算机能够模拟人类的思维过程,从而 ``` ```log Inference time: xxxx s -------------------- Prompt -------------------- 解释一下“温故而知新” -------------------- Output -------------------- 解释一下“温故而知新” 温故而知新是一个成语,出自《论语·为政》篇。这个成语的意思是:通过回顾和了解过去的事情,可以更好地理解新的知识和 ```