# AWQ This example shows how to directly run 4-bit AWQ models using IPEX-LLM on Intel GPU. ## Verified Models ### Auto-AWQ Backend - [Llama-2-7B-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ) - [CodeLlama-7B-AWQ](https://huggingface.co/TheBloke/CodeLlama-7B-AWQ) - [Mistral-7B-Instruct-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-AWQ) - [Mistral-7B-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-AWQ) - [vicuna-7B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-7B-v1.5-AWQ) - [vicuna-13B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-13B-v1.5-AWQ) - [llava-v1.5-13B-AWQ](https://huggingface.co/TheBloke/llava-v1.5-13B-AWQ) - [Yi-6B-AWQ](https://huggingface.co/TheBloke/Yi-6B-AWQ) - [Yi-34B-AWQ](https://huggingface.co/TheBloke/Yi-34B-AWQ) - [Mixtral-8x7B-Instruct-v0.1-AWQ](https://huggingface.co/ybelkada/Mixtral-8x7B-Instruct-v0.1-AWQ) ### llm-AWQ Backend - [vicuna-7b-1.5-awq](https://huggingface.co/ybelkada/vicuna-7b-1.5-awq) ## Requirements To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. ## Example: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a AWQ model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations. ### 1. Install We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install autoawq==0.1.8 --no-deps pip install accelerate==0.25.0 pip install einops ``` ### 2. Configures OneAPI environment variables ```bash source /opt/intel/oneapi/setvars.sh ``` ### 3. Run For optimal performance on Arc, it is recommended to set several environment variables. ```bash export USE_XETLA=OFF export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 ``` ``` python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the AWQ model (e.g. `TheBloke/Llama-2-7B-Chat-AWQ`, `TheBloke/Mistral-7B-Instruct-v0.1-AWQ`, `TheBloke/Mistral-7B-v0.1-AWQ`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'TheBloke/Llama-2-7B-Chat-AWQ'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. > **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. > > Please select the appropriate size of the Llama2 model based on the capabilities of your machine. #### 2.3 Sample Output #### ["TheBloke/Llama-2-7B-Chat-AWQ"](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ) ```log Inference time: xxxx s -------------------- Prompt -------------------- ### HUMAN: What is AI? ### RESPONSE: -------------------- Output -------------------- ### HUMAN: What is AI? ### RESPONSE: Artificial intelligence (AI) is the ability of machines to perform tasks that typically require human intelligence, such as learning, problem-solving, decision ```