# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import time import torch import librosa import argparse from PIL import Image from transformers import AutoTokenizer from ipex_llm.transformers import AutoModel if __name__ == '__main__': parser = argparse.ArgumentParser(description='Chat with MiniCPM-o-2_6 with text/audio/image') parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-o-2_6", help='The Hugging Face or ModelScope repo id for the MiniCPM-o-2_6 model to be downloaded' ', or the path to the checkpoint folder') parser.add_argument('--image-path', type=str, help='The path to the image for inference.') parser.add_argument('--audio-path', type=str, help='The path to the audio for inference.') parser.add_argument('--prompt', type=str, help='Prompt for inference.') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path image_path = args.image_path audio_path = args.audio_path modules_to_not_convert = [] init_vision = False init_audio = False if image_path is not None and os.path.exists(image_path): init_vision = True modules_to_not_convert += ["vpm", "resampler"] if audio_path is not None and os.path.exists(audio_path): init_audio = True modules_to_not_convert += ["apm"] # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format model = AutoModel.from_pretrained(model_path, load_in_low_bit="sym_int4", optimize_model=True, trust_remote_code=True, attn_implementation='sdpa', use_cache=True, init_vision=init_vision, init_audio=init_audio, init_tts=False, modules_to_not_convert=modules_to_not_convert) model = model.half().to('xpu') tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # The following code for generation is adapted from # https://huggingface.co/openbmb/MiniCPM-o-2_6#addressing-various-audio-understanding-tasks and # https://huggingface.co/openbmb/MiniCPM-o-2_6#chat-with-single-image content = [] if init_vision: image_input = Image.open(image_path).convert('RGB') content.append(image_input) if args.prompt is not None: content.append(args.prompt) if init_audio: audio_input, _ = librosa.load(audio_path, sr=16000, mono=True) content.append(audio_input) messages = [{'role': 'user', 'content': content}] with torch.inference_mode(): # ipex_llm model needs a warmup, then inference time can be accurate model.chat( msgs=messages, tokenizer=tokenizer, sampling=True, max_new_tokens=args.n_predict, ) st = time.time() response = model.chat( msgs=messages, tokenizer=tokenizer, sampling=True, max_new_tokens=args.n_predict, ) torch.xpu.synchronize() end = time.time() print(f'Inference time: {end-st} s') print('-'*20, 'Input Image Path', '-'*20) print(image_path) print('-'*20, 'Input Audio Path', '-'*20) print(audio_path) print('-'*20, 'Input Prompt', '-'*20) print(args.prompt) print('-'*20, 'Chat Output', '-'*20) print(response)