# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch from transformers.utils import logging import time from transformers import AutoTokenizer import uvicorn import asyncio import argparse from ipex_llm.serving.fastapi import FastApp from ipex_llm.serving.fastapi import ModelWorker logger = logging.get_logger(__name__) async def main(): parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging ipex-llm') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--low-bit', type=str, default='sym_int4', help='The quantization type the model will convert to.') parser.add_argument('--port', type=int, default=8000, help='The port number on which the server will run.') args = parser.parse_args() model_path = args.repo_id_or_model_path low_bit = args.low_bit local_model = ModelWorker(model_path, low_bit) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, padding_side='left') if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token myapp = FastApp(local_model, tokenizer) config = uvicorn.Config(app=myapp.app, host="0.0.0.0", port=args.port) server = uvicorn.Server(config) await server.serve() if __name__ == "__main__": asyncio.run(main())