# Langchain examples The examples in this folder shows how to use [LangChain](https://www.langchain.com/) with `ipex-llm` on Intel GPU. ### 1. Install ipex-llm Follow the instructions in [GPU Install Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Overview/install_gpu.html) to install ipex-llm ### 2. Configures OneAPI environment variables for Linux > [!NOTE] > Skip this step if you are running on Windows. This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. ```bash source /opt/intel/oneapi/setvars.sh ``` ### 3. Runtime Configurations For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. #### 3.1 Configurations for Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series ```bash export USE_XETLA=OFF export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export SYCL_CACHE_PERSISTENT=1 ```
For Intel Data Center GPU Max Series ```bash export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export SYCL_CACHE_PERSISTENT=1 export ENABLE_SDP_FUSION=1 ``` > Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
For Intel iGPU ```bash export SYCL_CACHE_PERSISTENT=1 export BIGDL_LLM_XMX_DISABLED=1 ```
#### 3.2 Configurations for Windows
For Intel iGPU ```cmd set SYCL_CACHE_PERSISTENT=1 set BIGDL_LLM_XMX_DISABLED=1 ```
For Intel Arc™ A-Series Graphics ```cmd set SYCL_CACHE_PERSISTENT=1 ```
> [!NOTE] > For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. ### 4. Run the examples #### 4.1. Streaming Chat Install dependencies: ```bash pip install langchain==0.0.184 pip install -U pandas==2.0.3 ``` Then execute: ```bash python chat.py -m MODEL_PATH -q QUESTION ``` arguments info: - `-m MODEL_PATH`: **required**, path to the model - `-q QUESTION`: question to ask. Default is `What is AI?`. #### 4.2. RAG (Retrival Augmented Generation) Install dependencies: ```bash pip install langchain==0.0.184 pip install -U chromadb==0.3.25 pip install -U pandas==2.0.3 ``` Then execute: ```bash python rag.py -m [-q QUESTION] [-i INPUT_PATH] ``` arguments info: - `-m MODEL_PATH`: **required**, path to the model. - `-q QUESTION`: question to ask. Default is `What is IPEX?`. - `-i INPUT_PATH`: path to the input doc. #### 4.3. Low Bit The low_bit example ([low_bit.py](./low_bit.py)) showcases how to use use langchain with low_bit optimized model. By `save_low_bit` we save the weights of low_bit model into the target folder. > Note: `save_low_bit` only saves the weights of the model. > Users could copy the tokenizer model into the target folder or specify `tokenizer_id` during initialization. Install dependencies: ```bash pip install langchain==0.0.184 pip install -U pandas==2.0.3 ``` Then execute: ```bash python low_bit.py -m -t [-q ] ``` **Runtime Arguments Explained**: - `-m MODEL_PATH`: **Required**, the path to the model - `-t TARGET_PATH`: **Required**, the path to save the low_bit model - `-q QUESTION`: the question #### 4.4 vLLM The vLLM example ([vllm.py](./vllm.py)) showcases how to use langchain with ipex-llm integrated vLLM engine. Install dependencies: ```bash pip install "langchain<0.2" ``` Besides, you should also install IPEX-LLM integrated vLLM according instructions listed [here](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/vLLM_quickstart.html#install-vllm) **Runtime Arguments Explained**: - `-m MODEL_PATH`: **Required**, the path to the model - `-q QUESTION`: the question - `-t MAX_TOKENS`: max tokens to generate, default 128 - `-p TENSOR_PARALLEL_SIZE`: Use multiple cards for generation - `-l LOAD_IN_LOW_BIT`: Low bit format for quantization ##### Single card The following command shows an example on how to execute the example using one card: ```bash python ./vllm.py -m YOUR_MODEL_PATH -q "What is AI?" -t 128 -p 1 -l sym_int4 ``` ##### Multi cards To use `-p TENSOR_PARALLEL_SIZE` option, you will need to use our docker image: `intelanalytics/ipex-llm-serving-xpu:latest`. For how to use the image, try check this [guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/DockerGuides/vllm_docker_quickstart.html#multi-card-serving). The following command shows an example on how to execute the example using two cards: ```bash export CCL_WORKER_COUNT=2 export FI_PROVIDER=shm export CCL_ATL_TRANSPORT=ofi export CCL_ZE_IPC_EXCHANGE=sockets export CCL_ATL_SHM=1 python ./vllm.py -m YOUR_MODEL_PATH -q "What is AI?" -t 128 -p 2 -l sym_int4 ```