# ChatGLM2 In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on ChatGLM2 models. For illustration purposes, we utilize the [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b) as a reference ChatGLM2 model. ## 0. Requirements To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. ## Example 1: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations. ### 1. Install We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 conda activate llm pip install ipex-llm[all] # install ipex-llm with 'all' option ``` ### 2. Run ``` python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm2-6b'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. > **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. > > Please select the appropriate size of the ChatGLM2 model based on the capabilities of your machine. #### 2.1 Client On client Windows machine, it is recommended to run directly with full utilization of all cores: ```powershell python ./generate.py ``` #### 2.2 Server For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. E.g. on Linux, ```bash # set IPEX-LLM env variables source ipex-llm-init # e.g. for a server with 48 cores per socket export OMP_NUM_THREADS=48 numactl -C 0-47 -m 0 python ./generate.py ``` #### 2.3 Sample Output #### [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b) ```log Inference time: xxxx s -------------------- Prompt -------------------- 问:AI是什么? 答: -------------------- Output -------------------- 问:AI是什么? 答: AI指的是人工智能,是一种能够通过学习和推理来执行任务的计算机程序。它可以模仿人类的思维方式,做出类似人类的决策,并且具有自主学习、自我 ``` ```log Inference time: xxxx s -------------------- Prompt -------------------- 问:What is AI? 答: -------------------- Output -------------------- 问:What is AI? 答: Artificial Intelligence (AI) refers to the ability of a computer or machine to perform tasks that typically require human-like intelligence, such as understanding language, recognizing patterns ``` ## Example 2: Stream Chat using `stream_chat()` API In the example [streamchat.py](./streamchat.py), we show a basic use case for a ChatGLM2 model to stream chat, with IPEX-LLM INT4 optimizations. ### 1. Install We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 conda activate llm pip install ipex-llm[all] # install ipex-llm with 'all' option ``` ### 2. Run **Stream Chat using `stream_chat()` API**: ``` python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION ``` **Chat using `chat()` API**: ``` python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION --disable-stream ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm2-6b'`. - `--question QUESTION`: argument defining the question to ask. It is default to be `"晚上睡不着应该怎么办"`. - `--disable-stream`: argument defining whether to stream chat. If include `--disable-stream` when running the script, the stream chat is disabled and `chat()` API is used. > **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. > > Please select the appropriate size of the ChatGLM2 model based on the capabilities of your machine. #### 2.1 Client On client Windows machine, it is recommended to run directly with full utilization of all cores: ```powershell $env:PYTHONUNBUFFERED=1 # ensure stdout and stderr streams are sent straight to terminal without being first buffered python ./streamchat.py ``` #### 2.2 Server For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. E.g. on Linux, ```bash # set IPEX-LLM env variables source ipex-llm-init # e.g. for a server with 48 cores per socket export OMP_NUM_THREADS=48 export PYTHONUNBUFFERED=1 # ensure stdout and stderr streams are sent straight to terminal without being first buffered numactl -C 0-47 -m 0 python ./streamchat.py ```