# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import whisper import time import librosa import argparse from ipex_llm import optimize_model if __name__ == '__main__': parser = argparse.ArgumentParser(description='Recognize Tokens using `transcribe()` API for Openai Whisper model') parser.add_argument('--model-name', type=str, default="tiny", help="The model name(tiny, medium, base, etc.) for the Whisper model to be downloaded." "It is one of the official model names listed by `whisper.available_models()`, or" "path to a model checkpoint containing the model dimensions and the model state_dict.") parser.add_argument('--audio-file', type=str, required=True, help='The path of the audio file to be recognized.') parser.add_argument('--language', type=str, default="English", help='language to be transcribed') args = parser.parse_args() # Load the input audio y, sr = librosa.load(args.audio_file) # Downsample the audio to 16kHz target_sr = 16000 audio = librosa.resample(y, orig_sr=sr, target_sr=target_sr) # Load whisper model under pytorch framework model = whisper.load_model(args.model_name) # With only one line to enable IPEX-LLM optimize on a pytorch model model = optimize_model(model) model = model.to('xpu') st = time.time() result = model.transcribe(audio, verbose=True, language=args.language) end = time.time() print(f'Inference time: {end-st} s') print('-'*20, 'Output', '-'*20) print(result["text"])