# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Some parts of this file is adapted from # https://github.com/huggingface/transformers/blob/v4.38.0/src/transformers/models/stablelm/modeling_stablelm.py # which is licensed under Apache License 2.0: # # Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import math from typing import Optional, Tuple, List, Union import torch from torch import nn import torch.nn.functional as F from transformers.models.stablelm.modeling_stablelm import StableLmAttention, StableLmModel from transformers.modeling_outputs import BaseModelOutputWithPast from ipex_llm.utils.common import invalidInputError from ipex_llm.transformers.models.utils import extend_kv_cache, append_kv_cache from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, \ apply_rotary_pos_emb_cache_freq_xpu from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \ restore_fp8_kv_cache, use_quantize_kv_cache from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36 from ipex_llm.transformers.models.utils import use_flash_attention, use_esimd_sdp from ipex_llm.transformers.models.mistral import should_use_fuse_rope, repeat_kv try: from transformers.cache_utils import Cache except ImportError: Cache = Tuple[torch.Tensor] KV_CACHE_ALLOC_BLOCK_LENGTH = 256 def merge_qkv(module: torch.nn.Module): if isinstance(module, StableLmAttention): new_weight = torch.cat([ module.q_proj.weight.data, module.k_proj.weight.data, module.v_proj.weight.data, ], dim=0) if module.q_proj.bias is not None: qkv_proj = torch.nn.Linear(0, 0, bias=True) new_bias = torch.cat([ module.q_proj.bias.data, module.k_proj.bias.data, module.v_proj.bias.data, ], dim=0) qkv_proj.bias = torch.nn.Parameter(new_bias, requires_grad=False) else: qkv_proj = torch.nn.Linear(0, 0, bias=False) qkv_proj.weight = torch.nn.Parameter(new_weight, requires_grad=False) qkv_proj.in_features = new_weight.size(1) qkv_proj.out_features = new_weight.size(0) module.qkv_proj = qkv_proj del module.q_proj, module.k_proj, module.v_proj def stablelm_model_forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: from ipex_llm.transformers.kv import DynamicFp8Cache use_cache = use_cache if use_cache is not None else self.config.use_cache if use_cache and use_quantize_kv_cache_stablelm(self.layers[0].self_attn.head_dim, self.layers[0].mlp.up_proj, input_ids): if not isinstance(past_key_values, DynamicFp8Cache): past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values) return StableLmModel.forward( self=self, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) def use_quantize_kv_cache_stablelm(head_dim: int, linear: torch.nn.Module, x: torch.Tensor) -> bool: return (head_dim == 64 or head_dim == 128) and use_quantize_kv_cache(linear, x) def stablelm_attention_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if use_quantize_kv_cache_stablelm(self.head_dim, self.o_proj, hidden_states): forward_function = stablelm_attention_forward_quantized else: forward_function = stablelm_attention_forward_original return forward_function( self=self, hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) def stablelm_attention_forward_original( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, position_ids: Optional[torch.LongTensor]=None, past_key_value: Optional[Cache]=None, output_attentions: bool=False, use_cache: bool=False, **kwargs ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: bsz, q_len, _ = hidden_states.size() device = hidden_states.device # for flash attention original_dtype = hidden_states.dtype use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids) enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx) qkv = self.qkv_proj(hidden_states) qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) qkv = qkv.transpose(1, 2) query_states, key_states, value_states = qkv.split([self.num_heads, self.num_heads, self.num_heads], dim=1) kv_seq_len = key_states.shape[-2] if past_key_value is not None: invalidInputError(self.layer_idx is not None, "The cache structure has changed since version v4.36. " f"If you are using {self.__class__.__name__} for " "auto-regressive decodingwith k/v caching, please make sure " "to initialize the attention class with a layer index.") kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_emb.dim], query_states[..., self.rotary_emb.dim:], ) key_rot, key_pass = ( key_states[..., : self.rotary_emb.dim], key_states[..., self.rotary_emb.dim:], ) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] if use_fuse_rope: query_rot, key_rot = apply_rotary_pos_emb_cache_freq_xpu(query_rot, key_rot, sin, cos, "stablelm", position_ids) else: query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids, "stablelm") # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: # update the number of seen tokens if self.layer_idx == 0: past_key_value.seen_tokens += key_states.shape[-2] # reuse k, v, self_attention # update `past_key_value` with `key_states` and `value_states` for layer `layer_idx` if len(past_key_value.key_cache) <= self.layer_idx: past_key_value.key_cache.append(key_states) past_key_value.value_cache.append(value_states) else: cache_k = past_key_value.key_cache[self.layer_idx] cache_v = past_key_value.value_cache[self.layer_idx] if not enough_kv_room: # allocate new new_c_k, new_c_v = extend_kv_cache(bsz, self.num_key_value_heads, # Support GQA self.head_dim, cache_k.size(2), kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, dtype=cache_k.dtype, device=device) new_c_k[:] = cache_k new_c_v[:] = cache_v cache_k = new_c_k cache_v = new_c_v key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states) # update past_key_value past_key_value.key_cache[self.layer_idx] = key_states past_key_value.value_cache[self.layer_idx] = value_states # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if not self.training and not hidden_states.requires_grad and \ use_flash_attention(query_states, key_states, attention_mask): attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16), key_states.to(device, dtype=torch.float16), value_states.to(device, dtype=torch.float16), is_causal=True) attn_weights = None elif not self.training and not hidden_states.requires_grad and \ use_esimd_sdp(q_len, key_states.shape[2], self.head_dim, query_states, attention_mask): import linear_fp16_esimd attn_output = linear_fp16_esimd.sdp_forward(query_states, key_states, value_states) attn_output = attn_output.view(query_states.shape) attn_weights = None else: attn_weights = torch.matmul( query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) invalidInputError( attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len), f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}," f" but is {attn_weights.size()}") if attention_mask is not None: invalidInputError( attention_mask.size() == (bsz, 1, q_len, kv_seq_len), f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}," f" but is {attention_mask.size()}") attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = \ nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query_states.dtype) attn_weights = self.attention_dropout(attn_weights) attn_output = torch.matmul(attn_weights, value_states) invalidInputError( attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim), f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}," f" but is {attn_output.size()}") attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output.to(original_dtype), attn_weights, past_key_value def stablelm_attention_forward_quantized( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, position_ids: Optional[torch.LongTensor]=None, past_key_value: Optional[Cache]=None, output_attentions: bool=False, use_cache: bool=False, **kwargs ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: bsz, q_len, hidden_size = hidden_states.size() device = hidden_states.device # for flash attention original_dtype = hidden_states.dtype use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids) qkv = self.qkv_proj(hidden_states) qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) qkv = qkv.transpose(1, 2) query_states, key_states, value_states = qkv.split([self.num_heads, self.num_heads, self.num_heads], dim=1) kv_seq_len = key_states.shape[-2] if past_key_value is not None: invalidInputError( self.layer_idx is not None, f"The cache structure has changed since version v4.36. " "If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, " "please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_emb.dim], query_states[..., self.rotary_emb.dim:], ) key_rot, key_pass = ( key_states[..., : self.rotary_emb.dim], key_states[..., self.rotary_emb.dim:], ) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] if use_fuse_rope: query_rot, key_rot = apply_rotary_pos_emb_cache_freq_xpu(query_rot, key_rot, sin, cos, "stablelm", position_ids) else: query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids, "stablelm") # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) kv_seq_len = key_states.shape[-2] if len(past_key_value.key_cache) <= self.layer_idx: attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) attn_weights = attn_weights / math.sqrt(self.head_dim) invalidInputError( attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len), f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}" f", but is {attn_weights.size()}") if attention_mask is not None: invalidInputError( attention_mask.size() == (bsz, 1, q_len, kv_seq_len), f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}," f" but is {attention_mask.size()}") attn_weights = attn_weights + attention_mask # at inference time, for memory considerations, may not need to upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(query_states.dtype) attn_weights = self.attention_dropout(attn_weights) attn_output = torch.matmul(attn_weights, value_states) invalidInputError( attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim), f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}" f", but is {attn_output.size()}") if use_cache: cache_kwargs = None key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) else: cache_kwargs = None # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) kv_seq_len = key_states.shape[-2] if query_states.size(2) != 1 or query_states.device.type != 'xpu': key_states, value_states = restore_fp8_kv_cache(key_states, value_states, query_states.dtype) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) else: import linear_q4_0 attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states) attn_weights = attn_weights / math.sqrt(self.head_dim) invalidInputError( attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len), f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}" f", but is {attn_weights.size()}") if attention_mask is not None: invalidInputError( attention_mask.size() == (bsz, 1, q_len, kv_seq_len), f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}," f" but is {attention_mask.size()}") attn_weights = attn_weights + attention_mask # at inference time, for memory considerations, may not need to upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1) attn_weights = self.attention_dropout(attn_weights) if query_states.size(2) != 1 or query_states.device.type != 'xpu': attn_output = torch.matmul(attn_weights, value_states) else: import linear_q4_0 attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states.transpose(-1, -2)) attn_output_size = (bsz, self.num_heads, q_len, self.head_dim) invalidInputError(attn_output.size() == attn_output_size, f"`attn_output` should be of size {attn_output_size}," f" but is {attn_output.size()}") attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output.to(original_dtype), attn_weights, past_key_value