# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import time import torch import argparse import requests from PIL import Image from ipex_llm.transformers import AutoModelForCausalLM, init_pipeline_parallel from transformers import AutoTokenizer init_pipeline_parallel() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for THUDM/glm-4v-9b model') parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-4v-9b", help='The huggingface repo id for the THUDM/glm-4v-9b model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--image-url-or-path', type=str, default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg', help='The URL or path to the image to infer') parser.add_argument('--prompt', type=str, default="这是什么?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') parser.add_argument('--low-bit', type=str, default='sym_int4', help='The quantization type the model will convert to.') parser.add_argument('--gpu-num', type=int, default=2, help='GPU number to use') args = parser.parse_args() model_path = args.repo_id_or_model_path image_path = args.image_url_or_path model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=args.low_bit, optimize_model=True, trust_remote_code=True, use_cache=True, pipeline_parallel_stages=args.gpu_num) model = model.half() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) local_rank = torch.distributed.get_rank() query = args.prompt if os.path.exists(image_path): image = Image.open(image_path) else: image = Image.open(requests.get(image_path, stream=True).raw) # here the prompt tuning refers to https://huggingface.co/THUDM/glm-4v-9b/blob/main/README.md inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}], add_generation_prompt=True, tokenize=True, return_tensors="pt", return_dict=True) # chat mode inputs = inputs.to(f'xpu:{local_rank}') all_input = [{'image': image_path}, {'text': query}] # Generate predicted tokens with torch.inference_mode(): gen_kwargs = {"max_new_tokens": args.n_predict, "do_sample": False,} st = time.time() outputs = model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] end = time.time() if local_rank == args.gpu_num - 1: print(f'Inference time: {end-st} s') output_str = tokenizer.decode(outputs[0]) print('-'*20, 'Input', '-'*20) print(f'Message: {all_input}') print('-'*20, 'Output', '-'*20) print(output_str)