# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This would makes sure Python is aware there is more than one sub-package within bigdl, # physically located elsewhere. # Otherwise there would be module not found error in non-pip's setting as Python would # only search the first bigdl package and end up finding only one sub-package. # Code adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant from langchain import LLMChain, PromptTemplate from ipex_llm.langchain.llms import * from langchain.memory import ConversationBufferWindowMemory from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler import speech_recognition as sr import pyttsx3 import argparse def prepare_chain(args): model_path = args.model_path model_family = args.model_family n_threads = args.thread_num n_ctx = args.context_size # Use a easy prompt could bring good-enough result # You could tune the prompt based on your own model to perform better template = """ {history} Q: {human_input} A:""" prompt = PromptTemplate(input_variables=["history", "human_input"], template=template) # We use our BigDLCausalLLM to subsititute OpenAI web-required API model_family_to_llm = { "llama": LlamaLLM, "gptneox": GptneoxLLM, "bloom": BloomLLM, "starcoder": StarcoderLLM, "chatglm": ChatGLMLLM } if model_family in model_family_to_llm: langchain_llm = model_family_to_llm[model_family] else: raise ValueError(f"Unknown model family: {model_family}") callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) llm = langchain_llm( model_path=model_path, n_threads=n_threads, callback_manager=callback_manager, verbose=True, n_ctx=n_ctx, stop=['\n\n'] # You could tune the stop words based on your own model to perform better ) # Following code are complete the same as the use-case voiceassitant_chain = LLMChain( llm=llm, prompt=prompt, verbose=True, memory=ConversationBufferWindowMemory(k=2), ) return voiceassitant_chain def listen(voiceassitant_chain): engine = pyttsx3.init() r = sr.Recognizer() with sr.Microphone() as source: print("Calibrating...") r.adjust_for_ambient_noise(source, duration=5) # optional parameters to adjust microphone sensitivity # r.energy_threshold = 200 # r.pause_threshold=0.5 print("Okay, go!") while 1: text = "" print("listening now...") try: audio = r.listen(source, timeout=5, phrase_time_limit=30) print("Recognizing...") # whisper model options are found here: https://github.com/openai/whisper#available-models-and-languages # other speech recognition models are also available. text = r.recognize_whisper( audio, model="medium.en", show_dict=True, )["text"] except Exception as e: unrecognized_speech_text = ( f"Sorry, I didn't catch that. Exception was: {e}s" ) text = unrecognized_speech_text print(text) response_text = voiceassitant_chain.predict(human_input=text) print(response_text) engine.say(response_text) engine.runAndWait() def main(args): chain = prepare_chain(args) listen(chain) if __name__ == '__main__': parser = argparse.ArgumentParser(description='BigDLCausalLM Langchain Voice Assistant Example') parser.add_argument('-x','--model-family', type=str, required=True, choices=["llama", "bloom", "gptneox", "chatglm", "starcoder"], help='the model family') parser.add_argument('-m','--model-path', type=str, required=True, help='the path to the converted llm model') parser.add_argument('-t','--thread-num', type=int, default=2, help='Number of threads to use for inference') parser.add_argument('-c','--context-size', type=int, default=512, help='Maximum context size') args = parser.parse_args() main(args)